SyväoppiminenLaajuus (5 op)
Tunnus: TTC8060
Laajuus
5 op
Opetuskieli
- suomi
Vastuuhenkilö
- Juha Peltomäki
Osaamistavoitteet
Ymmärrät syväoppimisen merkityksen digitalisoituvassa toimintaympäristössä. Tiedät yleisimmät syväoppimisen menetelmät, osaat soveltaa niitä käytännössä olemassa olevaan dataan sekä tulkita menetelmien tulokset.
EUR-ACE-osaamiset:
Tieto ja ymmärrys
Tekniikan soveltaminen käytäntöön
Tutkimukset ja tiedonhaku
Sisältö
- Erilaiset neuroverkot ja niiden arkkitehtuurit ja käyttötarkoitukset (CNN, RNN, LSTM, Autoencoder, jne.)
- Avoimen lähdekoodin työkaluilla työskentely
- Siirretty oppiminen
- Ennustaminen
- Konenäkö
- NLP
Esitietovaatimukset
Tietotekniikan peruskäyttätaidot, ohjelmoinnin perusosaaminen, Python-ohjelmointikielen tunteminen ja osaaminen.
Lisäksi Laskennalliset algoritmit ja Datan esikäsittely opintojaksot.
Arviointikriteerit, tyydyttävä (1)
Tyydyttävä 2: Tiedät syväoppimisen yleisimmin käytetyt tekniikat ja erilaisille ongelmille. Osaat valita syväoppimisen tekniikat ja soveltaa teknistä osaamistaan käytännössä. Lisäksi osaat arvioida pintapuolisesti toteutuksensa.
Välttävä 1: Tiedät syväoppimisen yleisimmin käytetyt tekniikat. Osaat soveltaa yleisimpiä syväoppimisen tekniikoita. Lisäksi osaat arvioida suppeasti toteutuksensa.
Arviointikriteerit, hyvä (3)
Kiitettevä 4: Tunnistat syväoppimisen tuomat hyödyt digitalisaation aikakautena. Osaat syväoppimisen yleisimmin käytetyt tekniikat ja osaa monipuolisesti perustella käytettyjen tekniikoiden käytön erilaisissa tehtävissä. Osaat soveltaa teknistä osaamistaan käytännössä ja arvioida kriittisesti toteutuksensa ja perustella sen kehittämistä.
Hyvä 3: Tiedostat syväoppimisen tuomat hyödyt digitalisaation aikakautena. Osaat syväoppimisen yleisimmin käytetyt tekniikat erilaisille ongelmille. Osaat soveltaa teknistä osaamistaan käytännössä arvioida toteutuksensa ja perustella sen kehittämistä.
Arviointikriteerit, kiitettävä (5)
Erinomainen 5: Tunnistat syväoppmisen tuomat hyödyt digitalisaation aikakautena. Osaat syväoppimisen yleisimmin käytetyt tekniikat ja osaa kriittisesti perustella käytettyjen tekniikoiden käytön erilaisissa tehtävissä. Osaat soveltaa teknistä osaamistaan käytännössä ja arvioida kriittisesti toteutuksensa ja perustella sen kehittämistä.
Enrollment
18.11.2024 - 09.01.2025
Timing
27.01.2025 - 09.03.2025
Number of ECTS credits allocated
5 op
Virtual portion
5 op
Mode of delivery
Online learning
Unit
School of Technology
Teaching languages
- English
Seats
0 - 70
Degree programmes
- Bachelor's Degree Programme in Information and Communications Technology
- Bachelor's Degree Programme in Information and Communications Technology
Teachers
- Juha Peltomäki
Groups
-
TTV22S5Tieto- ja viestintätekniikka (AMK)
-
TTV22S2Tieto- ja viestintätekniikka (AMK)
-
TTV22S3Tieto- ja viestintätekniikka (AMK)
-
TIC22S1Bachelor's Degree Programme in Information and Communications Technology
-
TTV22S1Tieto- ja viestintätekniikka (AMK)
-
TTV22SMTieto- ja viestintätekniikka (AMK)
-
TTV22S4Tieto- ja viestintätekniikka (AMK)
-
TTV22SM2Tieto- ja viestintätekniikka (AMK)
-
ZJA25KTIDA2Avoin amk, Data-analytiikka 2, Verkko
Objective
You understand the significance of deep learning in the digitalized operational environment. You know about the most common methods of deep learning and how to apply them in practice to existing data as well as interpret the results of the methods.
EUR-ACE Competences:
Knowledge and Understanding
Engineering Practice
Research and information retrieval
Content
- Various neural networks and their architectures and uses (e.g. CNN, RNN, LSTM, Autoencoder).
- Work with open source neural network tools
- Transfer learning
- Prediction
- Machine vision
- NLP
Location and time
The course will be implemented in the spring semester of 2025.
Oppimateriaali ja suositeltava kirjallisuus
The material for the assignments and the content to be studied will be shared during the course. The course utilizes the Python 3.11+ environment, Git version control, scikit-learn, TensorFlow 2, Keras and other visualization and deep learning libraries.
Teaching methods
Virtual study including doing assignments and familiarizing yourself with related lecture and example materials.
Employer connections
The aim is to connect the content of the course to problems that occur in working life.
Vaihtoehtoiset suoritustavat
The admission procedures are described in the degree rule and the study guide. The teacher of the course will give you more information on possible specific course practices.
Student workload
The workload of one credit corresponds to 27 hours of study. The total amount of study work (5 ECTS) in the course is 135 hours.
Content scheduling
The learning materials are published at the start of the course and are supplemented if necessary during the course.
More detailed installation instructions for the environments used in the course are also given at the beginning of the course.
Further information
The course is evaluated using returned assignments.
The assessment methods are reviewed at the beginning of the course.
Evaluation scale
0-5
Arviointikriteerit, tyydyttävä (1-2)
Satisfactory 2: You know the most commonly used techniques in Deep Learning for various problems. You know how to choose the techniques of Deep Learning and apply their technical know-how in practice. In addition, you know how to assess their implementation superficially.
Sufficient 1: You know the most commonly used techniques of Deep Learning. You are able to apply the most common techniques of Deep Learning. Additionally, you are able to assess their implementation briefly.
Arviointikriteerit, hyvä (3-4)
Very good 4: You recognize the advantages of Deep Learning in the era of digitalization. You know the most commonly used techniques of Deep Learning and is able to justify versatile the use of the implemented techniques in various tasks. You know how to apply their technical know-how in practice and assess their implementation critically as well as validate its development.
Good 3: You are aware of the advantages of Deep Learning in the era of digitalization. You know the most commonly used techniques of Deep Learning for various problems. You are able to apply his/her technical know-how in practice, assess their implementation in practice and validate its development.
Assessment criteria, excellent (5)
Excellent 5: You recognize the advantages of Deep Learning in the era of digitalization. You know the most commonly used techniques and is able to critically justify the used techniques in various tasks. You are able to apply their technical know-how in practice and critically assess their implementation as well as validate its development.
Qualifications
Basics in ICT, programming, knowledge and know-how of Python programming language.
Additionally, courses in Data Preprocessing and Computational algorithms.
Ilmoittautumisaika
01.08.2024 - 22.08.2024
Ajoitus
30.09.2024 - 15.11.2024
Opintopistemäärä
5 op
Virtuaaliosuus
5 op
Toteutustapa
Verkko-opetus
Yksikkö
Teknologiayksikkö
Opetuskielet
- Suomi
Paikat
0 - 35
Koulutus
- Tieto- ja viestintätekniikka (AMK)
Opettaja
- Juha Peltomäki
Ryhmät
-
TTV22S5Tieto- ja viestintätekniikka (AMK)
-
TTV22S2Tieto- ja viestintätekniikka (AMK)
-
TTV22S3Tieto- ja viestintätekniikka (AMK)
-
TTV22S1Tieto- ja viestintätekniikka (AMK)
-
TTV22SMTieto- ja viestintätekniikka (AMK)
-
TTV22S4Tieto- ja viestintätekniikka (AMK)
-
TTV22SM2Tieto- ja viestintätekniikka (AMK)
-
ZJA24STIDA2Avoin amk, Data-analytiikka 2, Verkko
Tavoitteet
Ymmärrät syväoppimisen merkityksen digitalisoituvassa toimintaympäristössä. Tiedät yleisimmät syväoppimisen menetelmät, osaat soveltaa niitä käytännössä olemassa olevaan dataan sekä tulkita menetelmien tulokset.
EUR-ACE-osaamiset:
Tieto ja ymmärrys
Tekniikan soveltaminen käytäntöön
Tutkimukset ja tiedonhaku
Sisältö
- Erilaiset neuroverkot ja niiden arkkitehtuurit ja käyttötarkoitukset (CNN, RNN, LSTM, Autoencoder, jne.)
- Avoimen lähdekoodin työkaluilla työskentely
- Siirretty oppiminen
- Ennustaminen
- Konenäkö
- NLP
Aika ja paikka
Opintojakso toteutetaan syyslukukaudella 2024.
Oppimateriaali ja suositeltava kirjallisuus
Materiaali harjoitustehtäviä ja opiskeltavia asiasisältöjä varten jaetaan kurssin aikana. Opintojaksolla hyödynnetään Python 3.11+-ympäristöä, Git-versiohallintaa, scikit-learn, TensorFlow 2, Keras sekä muita visualisointi- ja syväoppimiskirjastoja.
Opetusmenetelmät
Virtuaalinen opiskelu sisältäen harjoitustehtävien tekemisen sekä niihin liittyviin luento- ja esimerkkimateriaaleihin perehtymisen.
Harjoittelu- ja työelämäyhteistyö
Opintojakson sisältö pyritään kytkemään työelämässä esiintyviin ongelmiin.
Vaihtoehtoiset suoritustavat
Hyväksilukemisen menettelytavat kuvataan tutkintosäännössä ja opinto-oppaassa. Opintojakson opettaja antaa lisätietoa mahdollisista opintojakson erityiskäytänteistä.
Opiskelijan ajankäyttö ja kuormitus
Yhden opintopisteen työmäärä vastaa 27 tunnin opiskelutyötä. Yhteensä opiskelutyömäärä (5 op) kurssilla on 135 tuntia.
Sisällön jaksotus
Oppimateriaalit julkaistaan kurssin alkaessa ja niitä täydennetään tarvittaessa kurssin aikana.
Myös tarkemmat opintojaksolla käytettävien ympäristöjen asennusohjeet jaetaan alkuvaiheessa.
Lisätietoja opiskelijoille
Opintojakso arvioidaan palautettujen harjoitustehtävien avulla.
Arviointimenetelmät käydään läpi opintojakson alussa.
Arviointiasteikko
0-5
Arviointikriteerit, tyydyttävä (1-2)
Tyydyttävä 2: Tiedät syväoppimisen yleisimmin käytetyt tekniikat ja erilaisille ongelmille. Osaat valita syväoppimisen tekniikat ja soveltaa teknistä osaamistaan käytännössä. Lisäksi osaat arvioida pintapuolisesti toteutuksensa.
Välttävä 1: Tiedät syväoppimisen yleisimmin käytetyt tekniikat. Osaat soveltaa yleisimpiä syväoppimisen tekniikoita. Lisäksi osaat arvioida suppeasti toteutuksensa.
Arviointikriteerit, hyvä (3-4)
Kiitettevä 4: Tunnistat syväoppimisen tuomat hyödyt digitalisaation aikakautena. Osaat syväoppimisen yleisimmin käytetyt tekniikat ja osaa monipuolisesti perustella käytettyjen tekniikoiden käytön erilaisissa tehtävissä. Osaat soveltaa teknistä osaamistaan käytännössä ja arvioida kriittisesti toteutuksensa ja perustella sen kehittämistä.
Hyvä 3: Tiedostat syväoppimisen tuomat hyödyt digitalisaation aikakautena. Osaat syväoppimisen yleisimmin käytetyt tekniikat erilaisille ongelmille. Osaat soveltaa teknistä osaamistaan käytännössä arvioida toteutuksensa ja perustella sen kehittämistä.
Arviointikriteerit, kiitettävä (5)
Erinomainen 5: Tunnistat syväoppmisen tuomat hyödyt digitalisaation aikakautena. Osaat syväoppimisen yleisimmin käytetyt tekniikat ja osaa kriittisesti perustella käytettyjen tekniikoiden käytön erilaisissa tehtävissä. Osaat soveltaa teknistä osaamistaan käytännössä ja arvioida kriittisesti toteutuksensa ja perustella sen kehittämistä.
Esitietovaatimukset
Tietotekniikan peruskäyttätaidot, ohjelmoinnin perusosaaminen, Python-ohjelmointikielen tunteminen ja osaaminen.
Lisäksi Laskennalliset algoritmit ja Datan esikäsittely opintojaksot.
Enrollment
20.11.2023 - 04.01.2024
Timing
22.01.2024 - 10.03.2024
Number of ECTS credits allocated
5 op
Virtual portion
5 op
Mode of delivery
Online learning
Unit
School of Technology
Teaching languages
- English
Seats
0 - 30
Degree programmes
- Bachelor's Degree Programme in Information and Communications Technology
- Bachelor's Degree Programme in Information and Communications Technology
Teachers
- Juha Peltomäki
Groups
-
TTV21S3Tieto- ja viestintätekniikka (AMK)
-
TTV21S5Tieto- ja viestintätekniikka (AMK)
-
TTV21SMTieto- ja viestintätekniikka (AMK)
-
TIC21S1Bachelor's Degree Programme in Information and Communications Technology
-
TTV21S2Tieto- ja viestintätekniikka (AMK)
-
ZJA24KTIDA2Avoin amk, Data-analytiikka 2, Verkko
-
TTV21S1Tieto- ja viestintätekniikka (AMK)
Objective
You understand the significance of deep learning in the digitalized operational environment. You know about the most common methods of deep learning and how to apply them in practice to existing data as well as interpret the results of the methods.
EUR-ACE Competences:
Knowledge and Understanding
Engineering Practice
Research and information retrieval
Content
- Various neural networks and their architectures and uses (e.g. CNN, RNN, LSTM, Autoencoder).
- Work with open source neural network tools
- Transfer learning
- Prediction
- Machine vision
- NLP
Location and time
The course will be implemented in the spring semester of 2024.
Oppimateriaali ja suositeltava kirjallisuus
The material for the assignments and the content to be studied will be shared during the course. The course utilizes the Python 3.9+ environment, Git version control, scikit-learn, TensorFlow 2, Keras and other visualization and deep learning libraries.
Teaching methods
Virtual study including doing assignments and familiarizing yourself with related lecture and example materials.
Employer connections
The aim is to connect the content of the course to problems that occur in working life.
Vaihtoehtoiset suoritustavat
The admission procedures are described in the degree rule and the study guide. The teacher of the course will give you more information on possible specific course practices.
Student workload
The workload of one credit corresponds to 27 hours of study. The total amount of study work (5 ECTS) in the course is 135 hours.
Content scheduling
The learning materials are published at the start of the course and are supplemented if necessary during the course.
More detailed installation instructions for the environments used in the course are also given at the beginning of the course.
Further information
The course is evaluated using returned assignments.
The assessment methods are reviewed at the beginning of the course.
Evaluation scale
0-5
Arviointikriteerit, tyydyttävä (1-2)
Satisfactory 2: You know the most commonly used techniques in Deep Learning for various problems. You know how to choose the techniques of Deep Learning and apply their technical know-how in practice. In addition, you know how to assess their implementation superficially.
Sufficient 1: You know the most commonly used techniques of Deep Learning. You are able to apply the most common techniques of Deep Learning. Additionally, you are able to assess their implementation briefly.
Arviointikriteerit, hyvä (3-4)
Very good 4: You recognize the advantages of Deep Learning in the era of digitalization. You know the most commonly used techniques of Deep Learning and is able to justify versatile the use of the implemented techniques in various tasks. You know how to apply their technical know-how in practice and assess their implementation critically as well as validate its development.
Good 3: You are aware of the advantages of Deep Learning in the era of digitalization. You know the most commonly used techniques of Deep Learning for various problems. You are able to apply his/her technical know-how in practice, assess their implementation in practice and validate its development.
Assessment criteria, excellent (5)
Excellent 5: You recognize the advantages of Deep Learning in the era of digitalization. You know the most commonly used techniques and is able to critically justify the used techniques in various tasks. You are able to apply their technical know-how in practice and critically assess their implementation as well as validate its development.
Qualifications
Basics in ICT, programming, knowledge and know-how of Python programming language.
Additionally, courses in Data Preprocessing and Computational algorithms.
Ilmoittautumisaika
01.08.2023 - 24.08.2023
Ajoitus
09.10.2023 - 03.12.2023
Opintopistemäärä
5 op
Virtuaaliosuus
5 op
Toteutustapa
Verkko-opetus
Yksikkö
Teknologiayksikkö
Opetuskielet
- Suomi
Paikat
0 - 30
Koulutus
- Tieto- ja viestintätekniikka (AMK)
Opettaja
- Juha Peltomäki
Ryhmät
-
TTV21S3Tieto- ja viestintätekniikka (AMK)
-
TTV21S5Tieto- ja viestintätekniikka (AMK)
-
TTV21SMTieto- ja viestintätekniikka (AMK)
-
TTV21S2Tieto- ja viestintätekniikka (AMK)
-
TTV21S1Tieto- ja viestintätekniikka (AMK)
-
ZJA23STIDA2Avoin amk, Data-analytiikka 2, Verkko
Tavoitteet
Ymmärrät syväoppimisen merkityksen digitalisoituvassa toimintaympäristössä. Tiedät yleisimmät syväoppimisen menetelmät, osaat soveltaa niitä käytännössä olemassa olevaan dataan sekä tulkita menetelmien tulokset.
EUR-ACE-osaamiset:
Tieto ja ymmärrys
Tekniikan soveltaminen käytäntöön
Tutkimukset ja tiedonhaku
Sisältö
- Erilaiset neuroverkot ja niiden arkkitehtuurit ja käyttötarkoitukset (CNN, RNN, LSTM, Autoencoder, jne.)
- Avoimen lähdekoodin työkaluilla työskentely
- Siirretty oppiminen
- Ennustaminen
- Konenäkö
- NLP
Aika ja paikka
Opintojakso toteutetaan syyslukukaudella 2023.
Oppimateriaali ja suositeltava kirjallisuus
Materiaali harjoitustehtäviä ja opiskeltavia asiasisältöjä varten jaetaan kurssin aikana. Opintojaksolla hyödynnetään Python 3.9+-ympäristöä, Git-versiohallintaa, scikit-learn, TensorFlow 2, Keras sekä muita visualisointi- ja syväoppimiskirjastoja.
Opetusmenetelmät
Virtuaalinen opiskelu sisältäen harjoitustehtävien tekemisen sekä niihin liittyviin luento- ja esimerkkimateriaaleihin perehtymisen.
Harjoittelu- ja työelämäyhteistyö
Opintojakson sisältö pyritään kytkemään työelämässä esiintyviin ongelmiin.
Vaihtoehtoiset suoritustavat
Hyväksilukemisen menettelytavat kuvataan tutkintosäännössä ja opinto-oppaassa. Opintojakson opettaja antaa lisätietoa mahdollisista opintojakson erityiskäytänteistä.
Opiskelijan ajankäyttö ja kuormitus
Yhden opintopisteen työmäärä vastaa 27 tunnin opiskelutyötä. Yhteensä opiskelutyömäärä (5 op) kurssilla on 135 tuntia.
Sisällön jaksotus
Oppimateriaalit julkaistaan kurssin alkaessa ja niitä täydennetään tarvittaessa kurssin aikana.
Myös tarkemmat opintojaksolla käytettävien ympäristöjen asennusohjeet jaetaan alkuvaiheessa.
Lisätietoja opiskelijoille
Opintojakso arvioidaan palautettujen harjoitustehtävien avulla.
Arviointimenetelmät käydään läpi opintojakson alussa.
Arviointiasteikko
0-5
Arviointikriteerit, tyydyttävä (1-2)
Tyydyttävä 2: Tiedät syväoppimisen yleisimmin käytetyt tekniikat ja erilaisille ongelmille. Osaat valita syväoppimisen tekniikat ja soveltaa teknistä osaamistaan käytännössä. Lisäksi osaat arvioida pintapuolisesti toteutuksensa.
Välttävä 1: Tiedät syväoppimisen yleisimmin käytetyt tekniikat. Osaat soveltaa yleisimpiä syväoppimisen tekniikoita. Lisäksi osaat arvioida suppeasti toteutuksensa.
Arviointikriteerit, hyvä (3-4)
Kiitettevä 4: Tunnistat syväoppimisen tuomat hyödyt digitalisaation aikakautena. Osaat syväoppimisen yleisimmin käytetyt tekniikat ja osaa monipuolisesti perustella käytettyjen tekniikoiden käytön erilaisissa tehtävissä. Osaat soveltaa teknistä osaamistaan käytännössä ja arvioida kriittisesti toteutuksensa ja perustella sen kehittämistä.
Hyvä 3: Tiedostat syväoppimisen tuomat hyödyt digitalisaation aikakautena. Osaat syväoppimisen yleisimmin käytetyt tekniikat erilaisille ongelmille. Osaat soveltaa teknistä osaamistaan käytännössä arvioida toteutuksensa ja perustella sen kehittämistä.
Arviointikriteerit, kiitettävä (5)
Erinomainen 5: Tunnistat syväoppmisen tuomat hyödyt digitalisaation aikakautena. Osaat syväoppimisen yleisimmin käytetyt tekniikat ja osaa kriittisesti perustella käytettyjen tekniikoiden käytön erilaisissa tehtävissä. Osaat soveltaa teknistä osaamistaan käytännössä ja arvioida kriittisesti toteutuksensa ja perustella sen kehittämistä.
Esitietovaatimukset
Tietotekniikan peruskäyttätaidot, ohjelmoinnin perusosaaminen, Python-ohjelmointikielen tunteminen ja osaaminen.
Lisäksi Laskennalliset algoritmit ja Datan esikäsittely opintojaksot.
Ajoitus
13.02.2023 - 16.04.2023
Opintopistemäärä
5 op
Toteutustapa
Lähiopetus
Yksikkö
Teknologiayksikkö
Opetuskielet
- Suomi
Koulutus
- Tieto- ja viestintätekniikka (AMK)
Opettaja
- Juha Peltomäki
Ryhmät
-
ZJA23KTIDA2Avoin amk, Data-analytiikka 2, Verkko
Tavoitteet
Ymmärrät syväoppimisen merkityksen digitalisoituvassa toimintaympäristössä. Tiedät yleisimmät syväoppimisen menetelmät, osaat soveltaa niitä käytännössä olemassa olevaan dataan sekä tulkita menetelmien tulokset.
EUR-ACE-osaamiset:
Tieto ja ymmärrys
Tekniikan soveltaminen käytäntöön
Tutkimukset ja tiedonhaku
Sisältö
- Erilaiset neuroverkot ja niiden arkkitehtuurit ja käyttötarkoitukset (CNN, RNN, LSTM, Autoencoder, jne.)
- Avoimen lähdekoodin työkaluilla työskentely
- Siirretty oppiminen
- Ennustaminen
- Konenäkö
- NLP
Aika ja paikka
Opintojakso toteutetaan kevätlukukaudella 2023.
Oppimateriaali ja suositeltava kirjallisuus
Materiaali harjoitustehtäviä ja opiskeltavia asiasisältöjä varten jaetaan kurssin aikana. Opintojaksolla hyödynnetään Python 3.9+-ympäristöä, Git-versiohallintaa, scikit-learn, TensorFlow 2, Keras sekä muita visualisointi- ja syväoppimiskirjastoja.
Opetusmenetelmät
Virtuaalinen opiskelu sisältäen harjoitustehtävien tekemisen sekä niihin liittyviin luento- ja esimerkkimateriaaleihin perehtymisen.
Harjoittelu- ja työelämäyhteistyö
Opintojakson sisältö pyritään kytkemään työelämässä esiintyviin ongelmiin.
Tenttien ajankohdat ja uusintamahdollisuudet
Opintojakso arvioidaan palautettujen harjoitustehtävien avulla.
Vaihtoehtoiset suoritustavat
Hyväksilukemisen menettelytavat kuvataan tutkintosäännössä ja opinto-oppaassa. Opintojakson opettaja antaa lisätietoa mahdollisista opintojakson erityiskäytänteistä.
Opiskelijan ajankäyttö ja kuormitus
Yhden opintopisteen työmäärä vastaa 27 tunnin opiskelutyötä. Yhteensä opiskelutyömäärä (5 op) kurssilla on 135 tuntia.
Sisällön jaksotus
Oppimateriaalit jaetaan kurssin alkaessa ja niitä täydennetään tarvittaessa kurssin aikana.
Myös tarkemmat opintojaksolla käytettävien ympäristöjen asennusohjeet jaetaan alkuvaiheessa.
Arviointiasteikko
0-5
Arviointikriteerit, tyydyttävä (1-2)
Tyydyttävä 2: Tiedät syväoppimisen yleisimmin käytetyt tekniikat ja erilaisille ongelmille. Osaat valita syväoppimisen tekniikat ja soveltaa teknistä osaamistaan käytännössä. Lisäksi osaat arvioida pintapuolisesti toteutuksensa.
Välttävä 1: Tiedät syväoppimisen yleisimmin käytetyt tekniikat. Osaat soveltaa yleisimpiä syväoppimisen tekniikoita. Lisäksi osaat arvioida suppeasti toteutuksensa.
Arviointikriteerit, hyvä (3-4)
Kiitettevä 4: Tunnistat syväoppimisen tuomat hyödyt digitalisaation aikakautena. Osaat syväoppimisen yleisimmin käytetyt tekniikat ja osaa monipuolisesti perustella käytettyjen tekniikoiden käytön erilaisissa tehtävissä. Osaat soveltaa teknistä osaamistaan käytännössä ja arvioida kriittisesti toteutuksensa ja perustella sen kehittämistä.
Hyvä 3: Tiedostat syväoppimisen tuomat hyödyt digitalisaation aikakautena. Osaat syväoppimisen yleisimmin käytetyt tekniikat erilaisille ongelmille. Osaat soveltaa teknistä osaamistaan käytännössä arvioida toteutuksensa ja perustella sen kehittämistä.
Arviointikriteerit, kiitettävä (5)
Erinomainen 5: Tunnistat syväoppmisen tuomat hyödyt digitalisaation aikakautena. Osaat syväoppimisen yleisimmin käytetyt tekniikat ja osaa kriittisesti perustella käytettyjen tekniikoiden käytön erilaisissa tehtävissä. Osaat soveltaa teknistä osaamistaan käytännössä ja arvioida kriittisesti toteutuksensa ja perustella sen kehittämistä.
Esitietovaatimukset
Tietotekniikan peruskäyttätaidot, ohjelmoinnin perusosaaminen, Python-ohjelmointikielen tunteminen ja osaaminen.
Lisäksi Laskennalliset algoritmit ja Datan esikäsittely opintojaksot.
Ilmoittautumisaika
01.11.2022 - 05.01.2023
Ajoitus
13.02.2023 - 16.04.2023
Opintopistemäärä
5 op
Virtuaaliosuus
5 op
Toteutustapa
Verkko-opetus
Yksikkö
Teknologiayksikkö
Toimipiste
Lutakon kampus
Opetuskielet
- Suomi
Paikat
0 - 30
Koulutus
- Tieto- ja viestintätekniikka (AMK)
Opettaja
- Juha Peltomäki
Tavoitteet
Ymmärrät syväoppimisen merkityksen digitalisoituvassa toimintaympäristössä. Tiedät yleisimmät syväoppimisen menetelmät, osaat soveltaa niitä käytännössä olemassa olevaan dataan sekä tulkita menetelmien tulokset.
EUR-ACE-osaamiset:
Tieto ja ymmärrys
Tekniikan soveltaminen käytäntöön
Tutkimukset ja tiedonhaku
Sisältö
- Erilaiset neuroverkot ja niiden arkkitehtuurit ja käyttötarkoitukset (CNN, RNN, LSTM, Autoencoder, jne.)
- Avoimen lähdekoodin työkaluilla työskentely
- Siirretty oppiminen
- Ennustaminen
- Konenäkö
- NLP
Aika ja paikka
Opintojakso toteutetaan kevätlukukaudella 2023.
Oppimateriaali ja suositeltava kirjallisuus
Materiaali harjoitustehtäviä ja opiskeltavia asiasisältöjä varten jaetaan kurssin aikana. Opintojaksolla hyödynnetään Python 3.9+-ympäristöä, Git-versiohallintaa, scikit-learn, TensorFlow 2, Keras sekä muita visualisointi- ja syväoppimiskirjastoja.
Opetusmenetelmät
Virtuaalinen opiskelu sisältäen harjoitustehtävien tekemisen sekä niihin liittyviin luento- ja esimerkkimateriaaleihin perehtymisen.
Harjoittelu- ja työelämäyhteistyö
Opintojakson sisältö pyritään kytkemään työelämässä esiintyviin ongelmiin.
Tenttien ajankohdat ja uusintamahdollisuudet
Opintojakso arvioidaan palautettujen harjoitustehtävien avulla.
Vaihtoehtoiset suoritustavat
Hyväksilukemisen menettelytavat kuvataan tutkintosäännössä ja opinto-oppaassa. Opintojakson opettaja antaa lisätietoa mahdollisista opintojakson erityiskäytänteistä.
Opiskelijan ajankäyttö ja kuormitus
Yhden opintopisteen työmäärä vastaa 27 tunnin opiskelutyötä. Yhteensä opiskelutyömäärä (5 op) kurssilla on 135 tuntia.
Sisällön jaksotus
Oppimateriaalit jaetaan kurssin alkaessa ja niitä täydennetään tarvittaessa kurssin aikana.
Myös tarkemmat opintojaksolla käytettävien ympäristöjen asennusohjeet jaetaan alkuvaiheessa.
Arviointiasteikko
0-5
Arviointikriteerit, tyydyttävä (1-2)
Tyydyttävä 2: Tiedät syväoppimisen yleisimmin käytetyt tekniikat ja erilaisille ongelmille. Osaat valita syväoppimisen tekniikat ja soveltaa teknistä osaamistaan käytännössä. Lisäksi osaat arvioida pintapuolisesti toteutuksensa.
Välttävä 1: Tiedät syväoppimisen yleisimmin käytetyt tekniikat. Osaat soveltaa yleisimpiä syväoppimisen tekniikoita. Lisäksi osaat arvioida suppeasti toteutuksensa.
Arviointikriteerit, hyvä (3-4)
Kiitettevä 4: Tunnistat syväoppimisen tuomat hyödyt digitalisaation aikakautena. Osaat syväoppimisen yleisimmin käytetyt tekniikat ja osaa monipuolisesti perustella käytettyjen tekniikoiden käytön erilaisissa tehtävissä. Osaat soveltaa teknistä osaamistaan käytännössä ja arvioida kriittisesti toteutuksensa ja perustella sen kehittämistä.
Hyvä 3: Tiedostat syväoppimisen tuomat hyödyt digitalisaation aikakautena. Osaat syväoppimisen yleisimmin käytetyt tekniikat erilaisille ongelmille. Osaat soveltaa teknistä osaamistaan käytännössä arvioida toteutuksensa ja perustella sen kehittämistä.
Arviointikriteerit, kiitettävä (5)
Erinomainen 5: Tunnistat syväoppmisen tuomat hyödyt digitalisaation aikakautena. Osaat syväoppimisen yleisimmin käytetyt tekniikat ja osaa kriittisesti perustella käytettyjen tekniikoiden käytön erilaisissa tehtävissä. Osaat soveltaa teknistä osaamistaan käytännössä ja arvioida kriittisesti toteutuksensa ja perustella sen kehittämistä.
Esitietovaatimukset
Tietotekniikan peruskäyttätaidot, ohjelmoinnin perusosaaminen, Python-ohjelmointikielen tunteminen ja osaaminen.
Lisäksi Laskennalliset algoritmit ja Datan esikäsittely opintojaksot.