Siirry suoraan sisältöön

Syväoppiminen (5 op)

Toteutuksen tunnus: TTC8060-3002

Toteutuksen perustiedot


Ilmoittautumisaika
01.11.2021 - 09.01.2022
Ilmoittautuminen toteutukselle on päättynyt.
Ajoitus
07.03.2022 - 30.04.2022
Toteutus on päättynyt.
Opintopistemäärä
5 op
Lähiosuus
5 op
Toteutustapa
Lähiopetus
Yksikkö
Teknologiayksikkö
Toimipiste
Lutakon kampus
Opetuskielet
suomi
Paikat
0 - 35
Koulutus
Tieto- ja viestintätekniikka (AMK)
Opettajat
Juha Peltomäki
Ryhmät
ZJA21STIDA
Avoin AMK, tekniikka, ICT, Data-analytiikka
TTV19SM
Tieto- ja viestintätekniikka
TTV19S1
Tieto- ja viestintätekniikka
TTV20SM
Tieto- ja viestintätekniikka
TTV19S3
Tieto- ja viestintätekniikka
TTV19S2
Tieto- ja viestintätekniikka
TTV19S5
Tieto- ja viestintätekniikka
Opintojakso
TTC8060
Toteutukselle TTC8060-3002 ei löytynyt varauksia!

Arviointiasteikko

0-5

Sisällön jaksotus

Oppimateriaalit jaetaan kurssin alkaessa.

Tavoitteet

Ymmärrät syväoppimisen merkityksen digitalisoituvassa toimintaympäristössä. Tiedät yleisimmät syväoppimisen menetelmät, osaat soveltaa niitä käytännössä olemassa olevaan dataan sekä tulkita menetelmien tulokset.

EUR-ACE-osaamiset:
Tieto ja ymmärrys
Tekniikan soveltaminen käytäntöön
Tutkimukset ja tiedonhaku

Sisältö

- Erilaiset neuroverkot ja niiden arkkitehtuurit ja käyttötarkoitukset (CNN, RNN, LSTM, Autoencoder, jne.)
- Avoimen lähdekoodin työkaluilla työskentely
- Siirretty oppiminen
- Ennustaminen
- Konenäkö
- NLP

Aika ja paikka

Opintojakso toteutetaan kevätlukukaudella 2022.

Oppimateriaalit

Materiaali harjoitustehtäviä ja opiskeltavia asiasisältöjä varten jaetaan kurssin aikana. Kurssilla hyödynnetään Python 3.7+-ympäristöä, git-versiohallintaa, scikit-learn, tensorflow ja muita koneoppimis- sekä syväoppimiskirjastoja.

Opetusmenetelmät

Virtuaalinen opiskelu sisältäen harjoitustehtävien tekemisen sekä niihin liittyvään sisältöön perehtymisen.

Harjoittelu- ja työelämäyhteistyö

Kurssin sisältö pyritään kytkemään työelämässä esiintyviin ongelmiin.

Tenttien ajankohdat ja uusintamahdollisuudet

Kurssi arvioidaan palautettujen harjoitustehtävien avulla.

Toteutuksen valinnaiset suoritustavat

Hyväksilukemisen menettelytavat kuvataan tutkintosäännössä ja opinto-oppaassa. Opintojakson opettaja antaa lisätietoa mahdollisista opintojakson erityiskäytänteistä.

Opiskelijan ajankäyttö ja kuormitus

Yhden opintopisteen työmäärä vastaa 27 tunnin opiskelutyötä. Yhteensä opiskelutyömäärä (5 op) kurssilla on 135 tuntia.

Arviointikriteerit, tyydyttävä (1)

Tyydyttävä 2: Tiedät syväoppimisen yleisimmin käytetyt tekniikat ja erilaisille ongelmille. Osaat valita syväoppimisen tekniikat ja soveltaa teknistä osaamistaan käytännössä. Lisäksi osaat arvioida pintapuolisesti toteutuksensa.

Välttävä 1: Tiedät syväoppimisen yleisimmin käytetyt tekniikat. Osaat soveltaa yleisimpiä syväoppimisen tekniikoita. Lisäksi osaat arvioida suppeasti toteutuksensa.

Arviointikriteerit, hyvä (3)

Kiitettevä 4: Tunnistat syväoppimisen tuomat hyödyt digitalisaation aikakautena. Osaat syväoppimisen yleisimmin käytetyt tekniikat ja osaa monipuolisesti perustella käytettyjen tekniikoiden käytön erilaisissa tehtävissä. Osaat soveltaa teknistä osaamistaan käytännössä ja arvioida kriittisesti toteutuksensa ja perustella sen kehittämistä.

Hyvä 3: Tiedostat syväoppimisen tuomat hyödyt digitalisaation aikakautena. Osaat syväoppimisen yleisimmin käytetyt tekniikat erilaisille ongelmille. Osaat soveltaa teknistä osaamistaan käytännössä arvioida toteutuksensa ja perustella sen kehittämistä.

Arviointikriteerit, kiitettävä (5)

Erinomainen 5: Tunnistat syväoppmisen tuomat hyödyt digitalisaation aikakautena. Osaat syväoppimisen yleisimmin käytetyt tekniikat ja osaa kriittisesti perustella käytettyjen tekniikoiden käytön erilaisissa tehtävissä. Osaat soveltaa teknistä osaamistaan käytännössä ja arvioida kriittisesti toteutuksensa ja perustella sen kehittämistä.

Esitietovaatimukset

Tietotekniikan peruskäyttätaidot, ohjelmoinnin perusosaaminen, Python-ohjelmointikielen tunteminen ja osaaminen.
Lisäksi Laskennalliset algoritmit ja Datan esikäsittely opintojaksot.

Lisätiedot

Arvosana määräytyy alla olevien osaamistasojen mukaisesti:

Erinomainen 5: Opiskelija tunnistaa syväoppimisen tuomat hyödyt digitalisaation aikakautena. Opiskelija osaa syväoppimisen yleisimmin käytetyt tekniikat ja osaa kriittisesti perustella käytettyjen tekniikoiden käytön erilaisissa käyttötapauksissa. Hän osaa kriittisesti perustella ja valita oikeat tekniikat syväoppimiseen riippumatta lähdeaineistosta ja osaa soveltaa teknistä osaamistaan käytännössä. Lisäksi opiskelija osaa arvioida kriittisesti toteutuksensa ja perustella sen kehittämistä.

Kiitettevä 4: Opiskelija tunnistaa syväoppimisen tuomat hyödyt digitalisaation aikakautena. Opiskelija osaa syväoppimisen yleisimmin käytetyt tekniikat ja osaa laajasti perustella käytettyjen tekniikoiden käytön erilaisissa käyttötapauksissa. Hän osaa monipuolisesti perustella ja valita oikeat tekniikat syväoppimiseen ja hän osaa soveltaa teknistä osaamistaan käytännössä. Lisäksi opiskelija osaa arvioida perusteellisesti toteutuksensa ja perustella sen kehittämistä.

Hyvä 3: Opiskelija tiedostaa syväoppimisen hyödyt digitalisaation aikakautena. Opiskelija tietää syväoppimisen yleisimmin käytetyt tekniikat erilaisissa käyttötapauksissa. Hän osaa perustella ja valita tekniikat syväoppimiseen ja hän osaa soveltaa teknistä osaamistaan käytännössä. Lisäksi opiskelija osaa arvioida toteutuksensa ja perustella sen kehittämistä.

Tyydyttävä 2: Opiskelija tietää syväoppimisen yleisimmin käytetyt tekniikat käyttötapauksissa. Hän osaa valita tekniikat syväoppimiseen ja hän osaa soveltaa teknistä osaamistaan käytännössä. Lisäksi opiskelija osaa arvioida pintapuolisesti toteutuksensa.

Välttävä 1: Opiskelija tietää syväoppimisen yleisimmin käytetyt tekniikat käyttötapauksissa. Hän osaa soveltaa yleisimpiä tekniikoita syväoppimisessa. Lisäksi opiskelija osaa arvioida suppeasti toteutuksensa.

Hylätty 0: Opiskelija ei hallitse aihealuetta.

Siirry alkuun