Siirry suoraan sisältöön

Käyttövarmuuden hallinta (5 cr)

Code: TKKU0300-3004

General information


Enrollment

02.08.2021 - 05.09.2021

Timing

30.08.2021 - 31.12.2021

Number of ECTS credits allocated

5 op

Mode of delivery

Face-to-face

Unit

Teknologiayksikkö

Teaching languages

  • Finnish

Seats

15 - 40

Degree programmes

  • Energia- ja ympäristötekniikka (AMK)
  • Konetekniikka (AMK)

Teachers

  • Harri Tuukkanen

Teacher in charge

Harri Tuukkanen

Groups

  • TER18SM
    Energia- ja ympäristötekniikka
  • TER18S1
    Energia- ja ympäristötekniikka
  • TKN18SB
    Konetekniikka

Objective

A future professional of production, maintenance or engineering, this course supports your understanding of the lifecycle of assets from sourcing to rejection. You are able to define the required performance, which means that you can compile comprehensive and measurable techincal requirements. You understand the significance of the overall equipment effectiveness (OEE) and dependability for the production effectiveness and you are able to view the matter computationally. You are able to present analytical solutions to various dependability problems and apply known tools for solving the problems.

Knowledge and understanding:
You understand the pricipals of dependability thinking and understand the significance of requirements management

Engineering practice:
You are able to use analytical tools to assure the dependability of systems

Multidisciplinary competences:
You master both mathematical and qualitative skills.

Content

Technical definition of systems performance. Dependability and reliability engineering terms and definitions. Overall equipment effectiveness. Probability calculations. Dependability analysis. Failure cause analysis. Dependability development methods.

Oppimateriaali ja suositeltava kirjallisuus

Mikkonen, H. (toim.) 2009. Kuntoon perustuva kunnossapito: käsikirja. Helsinki. KP-Media.
Järvio, J. (toim.) 2017. Kunnossapito: tuotanto-omaisuuden hoitaminen. Helsinki: Kunnossapitoyhdistys Promaint.
Kosola J. 2007. Suorituskyvyn elinjakson hallinta. Helsinki. Maanpuolustuskorkeakoulu.
Kosola J. 2013. Vaatimustenhallinnan opas. Helsnki. Maanpuolustuskorkeakoulu.
Frenkel, I., Karagrigoriou, A., Lisnianski A. & Kleyner A. 2013. Applied Reliability Engineering and Risk Analysis: Probabilistic Models and Statistical Inference. John Wiley & Sons.
Smith, D. 2005 Reliability, Maintainability and Risk : Practical Methods for Engineers Including Reliability Centred Maintenance and Safety-Related Systems. Elsevier Science & Technology.
Kapur, K. Pecht, M. 2014. Reliability Engineering. Hoboken.
NASA - Reliability: https://extapps.ksc.nasa.gov/Reliability/
Standardit.

Teaching methods

Oppitunnit, harjoitustehtävät ohjattuna- sekä itseohjautuvana työskentelynä.

Employer connections

-

Exam schedules

Normaali lähitentti opintojakson lopulla. Uusintamahdollisuudet JAMK-tutkintosäännön mukaan. (1x2021 + 1x2022).

International connections

-

Vaihtoehtoiset suoritustavat

-

Student workload

Opetus koululla n. 3-4h viikossa. Viikkoharjoituksia osin ohjattuna n. 40 h Omalla ajalla suoritettavia harjoitustöitä n. 30 h.

Content scheduling

-

Further information

Arviointiperusteet: Tentti 50 %, Harjoitustyö 30 %, Muut harjoitukset 20 %. Tentti on läpäistävä vähintään 50 % pistesuoritteella. Harjoitustyö tulee suorittaa.

Evaluation scale

0-5

Arviointikriteerit, tyydyttävä (1-2)

(1)
You master the basics of the course:
- Dependability and reliability engineering terms and definitions.
- Failure cause analysis.
- Probability calculations.
- Dependability analysis.
- Dependability development methods.
- Dependability modeling.

(2)
You are able to utilize the methods listed here to a limited extend:
- Dependability and reliability engineering terms and definitions.
- Failure cause analysis.
- Probability calculations.
- Dependability analysis.
- Dependability development methods.
- Dependability modeling.

Arviointikriteerit, hyvä (3-4)

(3)
You are able to utilize the learned subjects comprehensively and you are able to perform independent decisions in practical tasks.

(4)
You master the requirement management processes. You are able to justify the dependablity management solutions mathematically and you know the critical analysis tools for production and maintenance.

Assessment criteria, excellent (5)

(5)
You master the essential terms and methods of dependability management and you are able to utilize them in critical and innovative manner in practical challenges. You are able to lead the analysis work in a real environment and solve the problems with analytical tools.

Qualifications

Mathematics (engineering). Basic knowledge of industrial systems. The course is suitable for all the mechanical-, electrical-, automation-, energy- and logistic engineering students after the midpoint of their studies.