Konenäkö (5 op)
Toteutuksen tunnus: TSAAA320-3002
Toteutuksen perustiedot
Ilmoittautumisaika
03.12.2021 - 09.01.2022
Ajoitus
01.01.2022 - 15.05.2022
Opintopistemäärä
5 op
Toteutustapa
Lähiopetus
Yksikkö
Teknologiayksikkö
Toimipiste
Pääkampus
Opetuskielet
- Suomi
Koulutus
- Sähkö- ja automaatiotekniikka (AMK)
Opettaja
- Samppa Alanen
- Juho Riekkinen
Ryhmät
-
TSA19SASähkö- ja automaatiotekniikka
Objectives
Suoritettuaan opintojakson opiskelija tuntee ja osaa käyttää konenäköjärjestelmien kuvanmuodostus- , esikäsittely- ja kuva-analyysimenetelmiä harmaasävy- ja värikameroille. Hän tuntee konenäön komponenttien ominaisuudet (kamerat , kuvankäsittelykomponentit, valonlähteet, optiikka, liitynnät). Opiskelija ymmärtää konenäköjärjestelmien toiminnan, rajoitukset ja mahdollisuudet. Hän osaa suunnitella konenäkölaitteiston ja ohjelmoida konenäkösovelluksen ja konenäköalgoritmit loppukäyttäjän tarpeen mukaisesti. Hän osaa mitoittaa ja suunnitella konenäköjärjestelmän asennuksen loppukäyttäjän kohteeseen asennusolosuhteiden asettamien tarpeiden mukaisesti (optinen geometria, kamera- ja valaistusvaihtoehtojen valinnat, liityntä automaatiojärjestelmään, olosuhdesuojaukset)
EA-EN: Tekninen analyysi
Opiskelija Osaa analysoida tuotanto- tai laadunvalvontaprosessia se ja osaa valita parhaiten sopivan konenäköratkaisun kohteeseen.
EA-EE: Tekninen suunnittelu
Opiskelija osaa valita ja mitoittaa konenäkökomponentit, järjestelmäkokonaisuuden ja suunnitella sovelluksen vaatimat konenäköfunktiot yrityksen/käyttäjän tarpeen mukaisesti.
EA-ER: Tekniikan soveltaminen käytäntöön
Opiskelija osaa valita tarkoituksenmukaiset konenäkölaitteet kuhunkin sovellukseen ja ottaa huomioon asennuksen ja olosuhteiden asettamat tarpeet ja rajoitukset.
Content
Keskeisiä sisältöalueita ovat kamera- ja valonlähdetekniikka, optinen mitoitus, kamera- ja valonlähdevalinnat, kuvanmuodostus , kuva-analyysi, konenäköjärjestelmän suunnittelu, konenäkösovelluksen ja konenäköalgoritmien ohjelmointi sekä liityntä automaatiojärjestelmään, robottiin tai manipulaattoriin. Opintojaksolla käsitellään myös asennusolosuhteiden vaatimukset suunnittelulle ja suojauksille.
Learning materials and recommended literature
Luentomateriaalit
Lisämateriaali kirjallisuudesta ja internetistä
Esim. https://www.wiley.com/en-us/Machine+Vision+Algorithms+and+Applications%2C+2nd+Edition-p-9783527413652
Teaching methods
Kontaktiopetus keskittyy konenäön teoriaan perehtymiseen, sekä käytännön harjoitusten tekemiseen. Toteutukseen kuuluu myös paljon ryhmätyönä tehtäviä laboratorioharjoituksia ja itsenäisesti tehtäviä palautettavia harjoituksia. Opintojakson toteutus sisältää siis itsenäistä työskentelyä, ryhmätyöskentelyä ja kontaktitunneille osallistumista.
Student workload
Opintojaksolla yhteensä 135h opiskeijan työtä, josta n. puolet kontaktiopetusta ja puolet itsenäistä työskentelyä.
Further information for students
Itse- ja vertaisarviointi palautettaviin harjoituksiin liittyen. Arviointipäätös pohjautuu palautettaviin harjoituksiin, laboratorioharjoituksiin ja tenttiin.
Evaluation scale
0-5
Evaluation criteria, satisfactory (1-2)
Välttävä (1): Opiskelija osaa osittain konenäköjärjestelmän HW- ja SW-suunnittelun sekä ottaa osittain huomioon asennukseen liittyvät tarpeet sovelluksen vaatimusten mukaisesti. Opiskelija osaa suunnitella ja toteuttaa toteuttaa konenäkösovelluksia laitevalintojen, ohjelmiston ja asennuksen osalta, mutta suunnittelussa ja toteutuksen toimivuudessa on merkittäviä puutteita.
Tyydyttävä (2): Opiskelija osaa pääosin konenäköjärjestelmän HW- ja SW-suunnittelun sekä ottaa huomioon asennukseen liittyvät tarpeet sovelluksen vaatimusten mukaisesti. Opiskelija osaa suunnitella ja toteuttaa toteuttaa konenäkösovellukset laitevalintojen, ohjelmiston ja asennuksen osalta, mutta suunnittelussa ja/tai toteutuksen toimivuudessa on puutteita.
.
Evaluation criteria, good (3-4)
Hyvä (3): Opiskelija osaa ratkaista konenäköjärjestelmän HW- ja SW-suunnittelun sekä asennukseen liittyvät tarpeet sovelluksen vaatimusten mukaisesti. Opiskelija osaa suunnitella ja toteuttaa konenäkösovellukset toimivalla tavalla laitevalintojen, ohjelmiston ja asennuksen osalta. Toimivasta toteutuksesta huolimatta valinnat ja/tai toteutus ei ole paras mahdollinen.
Kiitettävä (4): Opiskelija osoittaa hallitsevansa konenäköjärjestelmän HW- ja SW-suunnittelun sekä asennukseen liittyvät tarpeet sovelluksen vaatimusten mukaisesti. Opiskelija osaa suunnitella ja toteuttaa toteuttaa konenäkösovellukset erittäin hyvällä tavalla laitevalintojen, ohjelmiston ja asennuksen osalta, mutta ratkaisuissa on pieniä valinta- tai toteutuseroja optimaaliseen verrattuna.
Evaluation criteria, excellent (5)
Erinomainen (5): Opiskelija osoittaa hallitsevansa konenäköjärjestelmän HW- ja SW-suunnittelun sekä asennukseen liittyvät tarpeet sovelluksen vaatimusten mukaisesti. Opiskelija osaa suunnitella ja toteuttaa konenäkösovellukset optimaalisella tavalla laitevalintojen, ohjelmiston ja asennuksen osalta.
Prerequisites
Automaatiotekniikan perusteet sisältäen LabView –työkalun peruskäytön