Skip to main content

Future IoT Technologies (5cr)

Code

General information


Enrollment
17.11.2025 - 08.01.2026
Registration for the implementation has begun.
Timing
12.01.2026 - 30.04.2026
The implementation has not yet started.
Number of ECTS credits allocated
5 cr
Local portion
5 cr
Mode of delivery
Face-to-face
Unit
School of Technology
Campus
Lutakko Campus
Teaching languages
English
Seats
0 - 35
Degree programmes
Bachelor's Degree Programme in Information and Communications Technology
Bachelor's Degree Programme in Information and Communications Technology
Teachers
Jouko Kotkansalo
Groups
TTV23S2
Tieto- ja viestintätekniikka (AMK)
TTV23S3
Tieto- ja viestintätekniikka (AMK)
TTV23S5
Tieto- ja viestintätekniikka (AMK)
TTV23SM
Tieto- ja viestintätekniikka (AMK)
TIC23S1
Bachelor's Degree Programme in Information and Communications Technology
TTV23S1
Tieto- ja viestintätekniikka (AMK)
Course
TTC8850

Realization has 15 reservations. Total duration of reservations is 37 h 30 min.

Time Topic Location
Wed 14.01.2026 time 08:15 - 10:45
(2 h 30 min)
Future IoT Technologies TTC8850-3008
P2_D431 Elektroniikkalaboratorio
Wed 21.01.2026 time 08:15 - 10:45
(2 h 30 min)
Future IoT Technologies TTC8850-3008
P2_D431 Elektroniikkalaboratorio
Wed 28.01.2026 time 08:15 - 10:45
(2 h 30 min)
Future IoT Technologies TTC8850-3008
P2_D431 Elektroniikkalaboratorio
Wed 04.02.2026 time 08:15 - 10:45
(2 h 30 min)
Future IoT Technologies TTC8850-3008
P2_D431 Elektroniikkalaboratorio
Wed 11.02.2026 time 08:15 - 10:45
(2 h 30 min)
Future IoT Technologies TTC8850-3008
Online
Wed 18.02.2026 time 08:15 - 10:45
(2 h 30 min)
Future IoT Technologies TTC8850-3008
P2_D431 Elektroniikkalaboratorio
Wed 04.03.2026 time 08:15 - 10:45
(2 h 30 min)
Future IoT Technologies TTC8850-3008
P2_D431 Elektroniikkalaboratorio
Wed 11.03.2026 time 08:15 - 10:45
(2 h 30 min)
Future IoT Technologies TTC8850-3008
P2_D431 Elektroniikkalaboratorio
Wed 18.03.2026 time 08:15 - 10:45
(2 h 30 min)
Future IoT Technologies TTC8850-3008
P2_D431 Elektroniikkalaboratorio
Wed 25.03.2026 time 08:15 - 10:45
(2 h 30 min)
Future IoT Technologies TTC8850-3008
Online
Wed 01.04.2026 time 08:15 - 10:45
(2 h 30 min)
Future IoT Technologies TTC8850-3008
P2_D431 Elektroniikkalaboratorio
Wed 08.04.2026 time 08:15 - 10:45
(2 h 30 min)
Future IoT Technologies TTC8850-3008
P2_D431 Elektroniikkalaboratorio
Wed 15.04.2026 time 08:15 - 10:45
(2 h 30 min)
Future IoT Technologies TTC8850-3008
P2_D431 Elektroniikkalaboratorio
Wed 22.04.2026 time 08:15 - 10:45
(2 h 30 min)
Future IoT Technologies TTC8850-3008
P2_D431 Elektroniikkalaboratorio
Wed 29.04.2026 time 08:15 - 10:45
(2 h 30 min)
Future IoT Technologies TTC8850-3008
P2_D431 Elektroniikkalaboratorio
Changes to reservations may be possible.

Evaluation scale

0-5

Objective

Course objectives
In the course, you will learn how to use advanced new technologies, such as artificial intelligence, in the implementation of IoT systems. You get to know different neural networks and understand their basic parameters.

Competences:
EUR-ACE Knowledge and Understanding
EUR-ACE Engineering Practice


You know the architectures of neural networks and understand their application areas. You know how to make a Q-table of basic neural network design and implementation in practice. You know what the RL agent does and you know how to train the agent to make it work optimally. You understand the difference between On-Policy and Off-Policy algorithms and know how to use information to select an algorithm.

Content

Comparison of neural networks (RL, Supervised, Unsupervised )
Keras, Pytorch and other algorithm-based neural networks
RL agent and environment
Exploitation and exploration
Reward and hyperparameters
Basic neuromath and activation functions
Policy gradient method and value based learning
Bellman equation and its demo (Q-learning)
Pytorch, PPO algorithm and demo

Teaching methods

Exchange Students: 5 places

Assessment criteria, satisfactory (1)

Avoidance 1: You understand the principles of neural networks and can apply the knowledge to select them

Satisfactory 2: You understand the basics of Q-learning methods and can make a small application with it

Assessment criteria, good (3)

Good 3: Can adjust the parameter of the Bellman algorithm (Exploration, Exploitation, gamma +....) so that the operation of the controlled object is optimized

Excellent 4: You know how to tune a multilayer neural network using the PPO algorithm so that the given actuator behaves as desired.

Assessment criteria, excellent (5)

Excellent 5: In addition to the previous ones, you understand the limitations of artificial intelligence in various practical applications and understand that OpenAI-Gym models require a strong substance control. You also know how to document your work well, using TensorFlow outputs to evaluate hyperparameters.

Qualifications

Johdanto IoT-järjestelmiin

Go back to top of page