Siirry suoraan sisältöön

Koneoppiminen (5op)

Toteutuksen tunnus: TTVD0400-3001

Toteutuksen perustiedot


Ilmoittautumisaika
03.08.2020 - 30.08.2020
Ilmoittautuminen toteutukselle on päättynyt.
Ajoitus
02.11.2020 - 31.12.2020
Toteutus on päättynyt.
Opintopistemäärä
5 op
Lähiosuus
0 op
Virtuaaliosuus
5 op
Toteutustapa
Verkko-opetus
Yksikkö
Teknologiayksikkö
Opetuskielet
suomi
Paikat
0 - 60
Opettajat
Tomi Nieminen
Vastuuopettaja
Tomi Nieminen
Ryhmät
ZJA20STIDA
Avoin amk, tekniikka, ICT, Data-analytiikka ja tekoäly
Opintojakso
TTVD0400

Toteutukselle Koneoppiminen TTVD0400-3001 ei valitettavasti löytynyt varauksia. Varauksia ei ole mahdollisesti vielä julkaistu tai toteutus on itsenäisesti suoritettava.

Arviointiasteikko

0-5

Tavoitteet

Opiskelija ymmärtää koneoppimisen merkityksen digitalisoituvassa toimintaympäristössä. Opiskelija tietää yleisimmät koneoppimisen menetelmät, osaa soveltaa niitä käytännössä olemassa olevaan dataan sekä tulkita menetelmien tulokset.

Sisältö

• Data-analytiikkaan perustuvan tekoälyn matemaattiset perusteet
• Ohjatun koneoppimisen yleisimmät regressio- ja luokittelumallit ja niiden soveltaminen Python-ohjelmointiympäristössä käyttäen kirjastoja NumPy, Pandas, Scikit-learn ja Keras.
• Pandas dataframe -olion käsittely.
• Lineaarinen regressiomalli
• Logistinen regressiomalli
• Data-analytiikkaan perustuvan tekoälyn matemaattiset perusteet
• Ohjatun koneoppimisen yleisimmät regressio- ja luokittelumallit ja niiden soveltaminen Python-ohjelmointiympäristössä käyttäen kirjastoja NumPy, Pandas, Scikit-learn ja Keras.
• Pandas dataframe -olion käsittely.
• Lineaarinen regressiomalli
• Logistinen regressiomalli
• Data-analytiikkaan perustuvan tekoälyn matemaattiset perusteet
• Ohjatun koneoppimisen yleisimmät regressio- ja luokittelumallit ja niiden soveltaminen Python-ohjelmointiympäristössä käyttäen kirjastoja NumPy, Pandas, Scikit-learn ja Keras.
• Pandas dataframe -olion käsittely.
• Lineaarinen regressiomalli
• Logistinen regressiomalli
• MLP-neuroverkot
• Mallin tarkkuuden arviointi
• Support Vector Machine
• K-nearest neighbors algoritmi
• K-means klusterointi (ohjaamaton koneoppiminen)
• Aikasarjat ja rekursiiviset neuroverkot (LSTM)
• Kuvaluokittelu ja konvoluutioneuroverkot

Oppimateriaalit

Muller, Guido: Introduction to Machine Learning with Python

Opetusmenetelmät

Virtuaalinen opetus.

Opiskelijan ajankäyttö ja kuormitus

Itsenäinen työskentely 135 h.

Arviointikriteerit, tyydyttävä (1)

Erinomainen 5: Opiskelija tunnistaa koneoppimisen tuomat hyödyt digitalisaation aikakautena. Opiskelija hallitsee koneoppimisen tekniikat monipuolisesti ja osaa perustella käytettyjen tekniikoiden käytön erilaisissa tehtävissä. Opiskelija osaa soveltaa teknistä osaamistaan käytännössä ja arvioida kriittisesti toteutuksensa ja perustella sen kehittämistä.

Kiitettevä 4: Opiskelija tunnistaa koneoppimisen tuomat hyödyt digitalisaation aikakautena. Opiskelija osaa koneoppimisen yleisimmin käytetyt tekniikat ja osaa perustella käytettyjen tekniikoiden käytön erilaisissa tehtävissä. Opiskelija osaa soveltaa teknistä osaamistaan käytännössä ja arvioida kriittisesti toteutuksensa ja perustella sen kehittämistä.

Hyvä 3: Opiskelija tiedostaa koneoppimisen tuomat hyödyt digitalisaation aikakautena. Opiskelija osaa koneoppimisen yleisimmin käytetyt tekniikat erilaisille ongelmille. Opiskelija osaa soveltaa teknistä osaamistaan käytännössä arvioida toteutuksensa ja perustella sen kehittämistä.

Tyydyttävä 2: Opiskelija tietää koneoppimisen yleisimmin käytetyt tekniikat ja erilaisille ongelmille. Hän osaa valita koneoppimisen tekniikat ja soveltaa teknistä osaamistaan käytännössä. Lisäksi opiskelija osaa arvioida pintapuolisesti toteutuksensa.

Välttävä 1: Opiskelija tietää koneoppimisen yleisimmin käytetyt tekniikat. Hän osaa soveltaa yleisimpiä koneoppimisen tekniikoita. Lisäksi opiskelija osaa arvioida suppeasti toteutuksensa.

Esitietovaatimukset

Tietotekniikan peruskäyttätaidot, ohjelmoinnin perusosaaminen, Python-ohjelmointikielen tunteminen ja osaaminen.

Datan esikäsittely ja Datan analysointi opintojaksot

Siirry alkuun