Siirry suoraan sisältöön

Data Analytics (5 op)

Toteutuksen tunnus: YTIP2200-3002

Toteutuksen perustiedot


Ilmoittautumisaika
01.11.2021 - 09.01.2022
Ilmoittautuminen toteutukselle on päättynyt.
Ajoitus
10.01.2022 - 29.04.2022
Toteutus on päättynyt.
Opintopistemäärä
5 op
Lähiosuus
1 op
Virtuaaliosuus
4 op
Toteutustapa
Monimuoto-opetus
Yksikkö
Teknologiayksikkö
Toimipiste
Lutakon kampus
Opetuskielet
englanti
Paikat
0 - 35
Koulutus
Master's Degree Programme in Artificial Intelligence and Data Analytics
Opettajat
Tuula Kotikoski
Harri Varpanen
Vastuuopettaja
Mika Rantonen
Ryhmät
YTI21S1
Master's Degree Programme in Artificial Intelligence and Data-analytics
ZJA21STIPYIA
Avoin AMK, tekniikka, ICT, Artificial Intelligence and Data-analytics
Opintojakso
YTIP2200
Toteutukselle YTIP2200-3002 ei löytynyt varauksia!

Arviointiasteikko

0-5

Sisällön jaksotus

There will be one or few contact sessions on saturdays at 9am - 3pm. The exact times are announced by the end of the year 2021. The place will be JAMK / Lutakko campus, Piippukatu, Jyväskylä.

5 ECTS credits equals about 135 hours of study work.
Contact instruction: 36 hours
Exercises/Study project: 99 hours

Tavoitteet

The student understands the significance of data analytics in the digitalizing operational environment. The student knows the most commonly used methods and theories of data analytics as well as how to apply them in practice to existing data and interpret the results of the methods.

Course competences
EUYEN EUR-ACE: Engineering Analysis, Master's Degree
EUYEE EUR-ACE: Engineering Design, Master's Degree
EUYIV EUR-ACE: Investigations, Master's Degree

Sisältö

- Python data analytics libraries: NumPy, Pandas, Matplotlib, Seaborn, Scipy
- Data visualization
- Processing of missing values and outliers
- Statistical terms: Average, standard deviation, correlation coefficient and their interpretations
- The concept of probability distribution, confidence interval and hypothesis testing.
- Bernoulli and Poisson processes
- Linear/logistic regression, decision trees

Oppimateriaalit

Joel Grus: Data Science from Scratch: First Principles with Python

Opetusmenetelmät

luennot/verkkoluennot: 36 hours
harjoitustyöt/oppimistehtävät: 99 hours

Harjoittelu- ja työelämäyhteistyö

Vierailevat luennoitsijat

Tenttien ajankohdat ja uusintamahdollisuudet

Opintojaksolla ei ole tenttiä vaan arviointi tapahtuu oppimistehtävien ja harjoitustöiden arvioinnilla

Arviointikriteerit, tyydyttävä (1)

**Assessment criteria, sufficient 1, satisfactory 2
Sufficient 1:

The student knows about the most commonly used techniques in data analytics in data analysis tasks. He/she is able to apply the most common techniques to analysing data and has sufficient knowledge of the mathematics behind the techniques. Additionally, the student is able to assess his/her implementation briefly.

Satisfactory 2:
The student knows the most commonly used techniques in data analytics in data analysis tasks. He/she is able to select the techniques for analysing data and apply his/her technical know-how in practice. Student understands the mathematics behind the techniques at a satisfying level. Additionally, the student is able to assess his/her implementation superficially.

Arviointikriteerit, hyvä (3)

Good 3:
The student is aware of the advantages of data analytics in the era of digitalization. The student knows the most commonly used techniques of data analytics in various data analysis tasks. Student understands well the mathematics behind the techniques at a good level. He/she is able to validate and select the techniques in data analysis and apply his/her technical know-how in practice. Additionally, the student is able to assess his/her implementation and validate its development.

Very good 4:
The student recognizes the advantages of data analytics in the era of digitalization. The student knows the most commonly used techniques of data analytics and is able to extensively validate the use of implemented techniques in various data analysis tasks. Student understands the mathematics behind the techniques at a very good level. He/she is able to versatilely validate and select the correct techniques for the analysis of data and apply his/her technical know-how to practice. Additionally, the student is able to assess his/her implementation profoundly and validate its development.

Arviointikriteerit, kiitettävä (5)

Excellent 5:
The student recognizes the advantages of data analytics in the era of digitalization. The student knows the most commonly used techniques in data analytics and is able to critically validate the use of implemented techniques in various data analysis tasks. Student understands the mathematics behind the techniques in excellent level. He/she is able to critically validate and select the correct techniques in data analysis regardless of the data to be analyzed and apply the technical know-how to practice. Additionally, the student is able to critically assess his/her implementation and validate its development.

Lisätiedot

Avoin amk 5

Siirry alkuun