Siirry suoraan sisältöön

Mat1 YhtälötLaajuus (3 op)

Opintojakson tunnus: TT00CD62

Opintojakson perustiedot


Laajuus
3 op
Opetuskieli
suomi
englanti
Vastuuhenkilö
Harri Varpanen, TIC
Pekka Varis, TTV

Osaamistavoitteet

Opintojakson suoritettuasi osaat sieventää lausekkeita. Osaat ratkaista polynomi- ja juuriyhtälöitä sekä yhtälöryhmiä käsin, graafisesti ja tietotekniikkaa hyödyntäen. Osaat ratkaista matemaattisia ongelmia valmiiden mallien avulla. Lisäksi perehdyt tutkinto-ohjelmakohtaiseen matemaattiseen sisältöön

EUR-ACE: Tieto ja ymmärrys
Sinulla on tieto ja ymmärrys oman teknisen erikoistumisalasi matemaattisista ja luonnontieteellisistä perusteista tasolla, joka on tarpeen ohjelman muiden oppimistavoitteiden saavuttamiseksi.

Sisältö

Keskeisimmät sisällöt ovat:
Lausekkeiden sieventäminen (murtopotenssi, polynomit, rationaalilausekkeet, muistikaavat)
Funktion kuvaajan piirtäminen ja tulkitseminen
Ensimmäisen asteen yhtälöt ja suorat
Toisen asteen yhtälöt ja paraabelit
Juuria sisältävät yhtälöt
Yhtälöryhmät
Prosenttilaskut ja verrannot
Suorakulmaisen kolmion trigonometriaa
Avaruusgeometrian alkeet
Tutkinto-ohjelmakohtaisia sisältöjä

Esitietovaatimukset

Osaat peruslaskutoimitukset ja -säännöt luvuilla ja symboleilla. Ymmärrät lausekkeen ja yhtälön eron, ja osaat ratkaista yksinkertaisia ensimmäisen ja toisen asteen yhtälöitä. Hallitset prosenttilaskun perustapaukset. Tunnet funktioiden alkeet.

Arviointikriteerit, tyydyttävä (1)

Välttävä (1)
Osaat sieventää lausekkeita. Tunnistat erityyppisiä yhtälöitä ja osaat ratkaista yksinkertaisia polynomi- ja juuriyhtälöitä ja yhtälöpareja. Osaat käyttää valmiita sanallisista ja geometrisista ongelmista muodostettuja matemaattisia malleja ongelmien ratkaisemiseen.

Tyydyttävä (2)
Ymmärrät polynomiyhtälön käsitteen ja merkinnät. Osaat ratkaista polynomi- ja juuriyhtälöitä ja yhtälöpareja käsin, graafisesti ja tietotekniikkaa hyödyntäen. Osaat muodostaa yksinkertaisista sanallisista ja geometrisista ongelmista matemaattisia malleja ja käyttää niitä ongelmien ratkaisemiseen.

Arviointikriteerit, hyvä (3)

Hyvä (3)
Osaat polynomiyhtälön käsitteen ja merkinnät. Osaat ratkaista polynomi- ja juuriyhtälöitä ja yhtälöpareja käsin, graafisesti ja tietotekniikkaa hyödyntäen. Osaat muodostaa yksinkertaisista sanallisista ja geometrisista ongelmista matemaattisia malleja ja käyttää niitä ongelmien ratkaisemiseen.

Kiitettävä (4)
Osaat polynomiyhtälön käsitteen ja merkinnät. Osaat ratkaista haastavia polynomi- ja juuriyhtälöitä ja yhtälöpareja käsin, graafisesti ja tietotekniikkaa hyödyntäen. Osaat muodostaa aiemmin käsiteltyjen tilanteiden kaltaisista sanallisista ja geometrisista ongelmista matemaattisia malleja ja käyttää niitä ongelmien ratkaisemiseen.

Arviointikriteerit, kiitettävä (5)

Erinomainen (5)
Osaat polynomiyhtälön käsitteen ja merkinnät. Osaat ratkaista haastavia polynomi- ja juuriyhtälöitä ja yhtälöpareja käsin, graafisesti ja tietotekniikkaa hyödyntäen. Osaat muodostaa myös uusista sanallisista ja geometrisista ongelmista matemaattisia malleja ja käyttää niitä luovasti ongelmien ratkaisemiseen.

Siirry alkuun