Siirry suoraan sisältöön

Data Analytics (5 op)

Toteutuksen tunnus: YTIP2200-3003

Toteutuksen perustiedot


Ilmoittautumisaika
01.11.2022 - 05.01.2023
Ilmoittautuminen toteutukselle on päättynyt.
Ajoitus
09.01.2023 - 28.04.2023
Toteutus on päättynyt.
Opintopistemäärä
5 op
Lähiosuus
1 op
Virtuaaliosuus
4 op
Toteutustapa
Monimuoto-opetus
Yksikkö
Teknologiayksikkö
Toimipiste
Lutakon kampus
Opetuskielet
englanti
Paikat
0 - 35
Koulutus
Master's Degree Programme in Artificial Intelligence and Data Analytics
Opettajat
Harri Varpanen
Ryhmät
YTI22S1
Master's Degree Programme in Artificial Intelligence and Data-analytics
Opintojakso
YTIP2200
Toteutukselle YTIP2200-3003 ei löytynyt varauksia!

Arviointiasteikko

0-5

Sisällön jaksotus

Seven sets of theory / exercises:
1. Orientation (basics, numpy, matrices)
2. Data manipulation (pandas)
3. Data visualization (matplotlib & seaborn)
4. Time series (pmdarima)
5. Linear regression (scipy / sklearn)
6. Logistic regression (scipy / sklearn)
7. Dimension reduction (scipy / sklearn).

Tavoitteet

The student understands the significance of data analytics in the digitalizing operational environment. The student knows the most commonly used methods and theories of data analytics as well as how to apply them in practice to existing data and interpret the results of the methods.

Course competences
EUYEN EUR-ACE: Engineering Analysis, Master's Degree
EUYEE EUR-ACE: Engineering Design, Master's Degree
EUYIV EUR-ACE: Investigations, Master's Degree

Sisältö

- Python data analytics libraries: NumPy, Pandas, Matplotlib, Seaborn, Scipy
- Data visualization
- Processing of missing values and outliers
- Statistical terms: Average, standard deviation, correlation coefficient and their interpretations
- The concept of probability distribution, confidence interval and hypothesis testing.
- Bernoulli and Poisson processes
- Linear/logistic regression, decision trees

Oppimateriaalit

Online material.

Opetusmenetelmät

Online lectures (recorded) and exercise sessions.
Two campus meetings (Fri-Sat): Jan 13-14 and Mar 10-11, 2023

Tenttien ajankohdat ja uusintamahdollisuudet

No exams.

Toteutuksen valinnaiset suoritustavat

Uni. Helsinki: Data Analysis with Python (MOOC), course code CSM90004

Arviointikriteerit, tyydyttävä (1)

**Assessment criteria, sufficient 1, satisfactory 2
Sufficient 1:

The student knows about the most commonly used techniques in data analytics in data analysis tasks. He/she is able to apply the most common techniques to analysing data and has sufficient knowledge of the mathematics behind the techniques. Additionally, the student is able to assess his/her implementation briefly.

Satisfactory 2:
The student knows the most commonly used techniques in data analytics in data analysis tasks. He/she is able to select the techniques for analysing data and apply his/her technical know-how in practice. Student understands the mathematics behind the techniques at a satisfying level. Additionally, the student is able to assess his/her implementation superficially.

Arviointikriteerit, hyvä (3)

Good 3:
The student is aware of the advantages of data analytics in the era of digitalization. The student knows the most commonly used techniques of data analytics in various data analysis tasks. Student understands well the mathematics behind the techniques at a good level. He/she is able to validate and select the techniques in data analysis and apply his/her technical know-how in practice. Additionally, the student is able to assess his/her implementation and validate its development.

Very good 4:
The student recognizes the advantages of data analytics in the era of digitalization. The student knows the most commonly used techniques of data analytics and is able to extensively validate the use of implemented techniques in various data analysis tasks. Student understands the mathematics behind the techniques at a very good level. He/she is able to versatilely validate and select the correct techniques for the analysis of data and apply his/her technical know-how to practice. Additionally, the student is able to assess his/her implementation profoundly and validate its development.

Arviointikriteerit, kiitettävä (5)

Excellent 5:
The student recognizes the advantages of data analytics in the era of digitalization. The student knows the most commonly used techniques in data analytics and is able to critically validate the use of implemented techniques in various data analysis tasks. Student understands the mathematics behind the techniques in excellent level. He/she is able to critically validate and select the correct techniques in data analysis regardless of the data to be analyzed and apply the technical know-how to practice. Additionally, the student is able to critically assess his/her implementation and validate its development.

Lisätiedot

The grade is determined by the number of completed exercises.
Basic knowledge of python is assumed.

Siirry alkuun