Physics for LogisticsLaajuus (3 cr)
Code: TZLF7300
Credits
3 op
Teaching language
- Finnish
- English
Responsible person
- Pertti Ahonen
Objective
The object of the course
You will learn the basic concepts of fluid statics and how to apply mathematical methods of mechanics to logistical processes. You will also learn logical thinking and problem solving strategies.
Course competences (Eur-ACE)
EA-KW: You will obtain the basic knowledge and understanding of the concepts of fluid statics.
EA-EC: You will be able to apply engineering to practice.
The learning objectives of the course
After completing this course you are able to identify the basic principles of fluid statics and the mathematical methods of mechanics on logistical processes.
Content
Fluid statics: Hydraulic lift, hydrostatic pressure, Archimedes' principle and buoyant force.
Logistic processes: f.ex. center of mass of the load, cargo securing, stress of lifting accessories and warehouse shelves.
Qualifications
Basic knowledge of mechanics and elementary functions and ability to solve simple equations is required.
Assessment criteria, satisfactory (1)
Sufficient 1
You are able to recognize phenomena and the models attached to the field of the course.
You can solve simple course related problems. You can read different kinds of tables and graphs to get the right information. Your calculations may have some mistakes.
Satisfactory 2
You are able to understand phenomena and the models attached to the field of the course.
You can solve basic problems with the help of examples. You can read different kinds of tables and graphs to get the right information. Your calculations may have some mistakes.
Assessment criteria, good (3)
Good 3
You are able to understand phenomena and the models attached to the field of the course.
You can solve basic problems. You can read different kinds of tables and graphs and you are also able to produce them yourself. Your calculations may have some mistakes.
Very good 4
You are able to understand phenomena and the models attached to the field of the course.
You can solve challenging problems. You can read different kinds of tables and graphs and you are able to produce them yourself. You are also able to evaluate the assumptions and applicabilities of the models you are using. Your calculations are mainly right.
Assessment criteria, excellent (5)
Excellent 5
You are able to understand phenomena and the models attached to the field of the course.
You can solve challenging problems. You can read different kinds of tables and graphs and you are able to make make them yourself. You are also able to evaluate the assumptions and applicabilities of the models you are using. You can apply your knowledge to new situations. Your calculations are right but may have some careless errors.
Enrollment
01.04.2025 - 30.04.2025
Timing
20.05.2025 - 31.08.2025
Number of ECTS credits allocated
3 op
Virtual portion
3 op
Mode of delivery
Online learning
Unit
School of Technology
Campus
Main Campus
Teaching languages
- Finnish
Seats
10 - 15
Degree programmes
- Bachelor's Degree Programme in Logistics
Teachers
- Pertti Ahonen
Groups
-
UTIVERKKOInstitute of New Industry, online learning (mechanical, logistics and civil engineering)
Objectives
The object of the course
You will learn the basic concepts of fluid statics and how to apply mathematical methods of mechanics to logistical processes. You will also learn logical thinking and problem solving strategies.
Course competences (Eur-ACE)
EA-KW: You will obtain the basic knowledge and understanding of the concepts of fluid statics.
EA-EC: You will be able to apply engineering to practice.
The learning objectives of the course
After completing this course you are able to identify the basic principles of fluid statics and the mathematical methods of mechanics on logistical processes.
Content
Fluid statics: Hydraulic lift, hydrostatic pressure, Archimedes' principle and buoyant force.
Logistic processes: f.ex. center of mass of the load, cargo securing, stress of lifting accessories and warehouse shelves.
Learning materials and recommended literature
Suvanto, K. Tekniikan FYSIIKKA 1. Edita. All editions.
Teaching methods
- self-study
- distance learning
- exercises
Exam dates and retake possibilities
Online exam (Zoom) and two possible resits. Dates will be announced in the beginning of the course.
Student workload
One credit equals 27 hours of work, which means that this course needs about 81 working hours.
Further information for students
Assessment criteria: points from the exam.
Evaluation scale
0-5
Evaluation criteria, satisfactory (1-2)
Sufficient 1
You are able to recognize phenomena and the models attached to the field of the course.
You can solve simple course related problems. You can read different kinds of tables and graphs to get the right information. Your calculations may have some mistakes.
Satisfactory 2
You are able to understand phenomena and the models attached to the field of the course.
You can solve basic problems with the help of examples. You can read different kinds of tables and graphs to get the right information. Your calculations may have some mistakes.
Evaluation criteria, good (3-4)
Good 3
You are able to understand phenomena and the models attached to the field of the course.
You can solve basic problems. You can read different kinds of tables and graphs and you are also able to produce them yourself. Your calculations may have some mistakes.
Very good 4
You are able to understand phenomena and the models attached to the field of the course.
You can solve challenging problems. You can read different kinds of tables and graphs and you are able to produce them yourself. You are also able to evaluate the assumptions and applicabilities of the models you are using. Your calculations are mainly right.
Evaluation criteria, excellent (5)
Excellent 5
You are able to understand phenomena and the models attached to the field of the course.
You can solve challenging problems. You can read different kinds of tables and graphs and you are able to make make them yourself. You are also able to evaluate the assumptions and applicabilities of the models you are using. You can apply your knowledge to new situations. Your calculations are right but may have some careless errors.
Prerequisites
Basic knowledge of mechanics and elementary functions and ability to solve simple equations is required.
Enrollment
01.04.2025 - 30.04.2025
Timing
20.05.2025 - 31.08.2025
Number of ECTS credits allocated
3 op
Virtual portion
3 op
Mode of delivery
Online learning
Unit
School of Technology
Campus
Main Campus
Teaching languages
- English
Seats
10 - 15
Degree programmes
- Bachelor's Degree Programme in Purchasing and Logistics Engineering
Teachers
- Pertti Ahonen
Groups
-
UTIVERKKOInstitute of New Industry, online learning (mechanical, logistics and civil engineering)
Objectives
The object of the course
You will learn the basic concepts of fluid statics and how to apply mathematical methods of mechanics to logistical processes. You will also learn logical thinking and problem solving strategies.
Course competences (Eur-ACE)
EA-KW: You will obtain the basic knowledge and understanding of the concepts of fluid statics.
EA-EC: You will be able to apply engineering to practice.
The learning objectives of the course
After completing this course you are able to identify the basic principles of fluid statics and the mathematical methods of mechanics on logistical processes.
Content
Fluid statics: Hydraulic lift, hydrostatic pressure, Archimedes' principle and buoyant force.
Logistic processes: f.ex. center of mass of the load, cargo securing, stress of lifting accessories and warehouse shelves.
Learning materials and recommended literature
Knight, Randal D. Physics for Scientists and Engineers. Pearson International edition.
Teaching methods
- self-study
- distance learning
- exercises
Exam dates and retake possibilities
Online exam (Zoom) and two possible resits. Dates will be announced in the beginning of the course.
Student workload
One credit equals 27 hours of work, which means that this course needs about 81 working hours.
Further information for students
Assessment criteria: points from the exam
Evaluation scale
0-5
Evaluation criteria, satisfactory (1-2)
Sufficient 1
You are able to recognize phenomena and the models attached to the field of the course.
You can solve simple course related problems. You can read different kinds of tables and graphs to get the right information. Your calculations may have some mistakes.
Satisfactory 2
You are able to understand phenomena and the models attached to the field of the course.
You can solve basic problems with the help of examples. You can read different kinds of tables and graphs to get the right information. Your calculations may have some mistakes.
Evaluation criteria, good (3-4)
Good 3
You are able to understand phenomena and the models attached to the field of the course.
You can solve basic problems. You can read different kinds of tables and graphs and you are also able to produce them yourself. Your calculations may have some mistakes.
Very good 4
You are able to understand phenomena and the models attached to the field of the course.
You can solve challenging problems. You can read different kinds of tables and graphs and you are able to produce them yourself. You are also able to evaluate the assumptions and applicabilities of the models you are using. Your calculations are mainly right.
Evaluation criteria, excellent (5)
Excellent 5
You are able to understand phenomena and the models attached to the field of the course.
You can solve challenging problems. You can read different kinds of tables and graphs and you are able to make make them yourself. You are also able to evaluate the assumptions and applicabilities of the models you are using. You can apply your knowledge to new situations. Your calculations are right but may have some careless errors.
Prerequisites
Basic knowledge of mechanics and elementary functions and ability to solve simple equations is required.
Enrollment
18.11.2024 - 09.01.2025
Timing
13.01.2025 - 19.05.2025
Number of ECTS credits allocated
3 op
Virtual portion
1.5 op
Mode of delivery
50 % Face-to-face, 50 % Online learning
Unit
School of Technology
Campus
Main Campus
Teaching languages
- Finnish
Seats
20 - 25
Degree programmes
- Bachelor's Degree Programme in Logistics
Teachers
- Pertti Ahonen
Groups
-
TLS23SMMLogistiikka - tutkinto-ohjelma (AMK)
Objectives
The object of the course
You will learn the basic concepts of fluid statics and how to apply mathematical methods of mechanics to logistical processes. You will also learn logical thinking and problem solving strategies.
Course competences (Eur-ACE)
EA-KW: You will obtain the basic knowledge and understanding of the concepts of fluid statics.
EA-EC: You will be able to apply engineering to practice.
The learning objectives of the course
After completing this course you are able to identify the basic principles of fluid statics and the mathematical methods of mechanics on logistical processes.
Content
Fluid statics: Hydraulic lift, hydrostatic pressure, Archimedes' principle and buoyant force.
Logistic processes: f.ex. center of mass of the load, cargo securing, stress of lifting accessories and warehouse shelves.
Learning materials and recommended literature
Suvanto, K. Tekniikan FYSIIKKA 1. Edita. All editions.
Teaching methods
- lessons
- self-study
- exercises
Exam dates and retake possibilities
Exam and two possible resits. Dates and places will be announced in the beginning of the course.
Student workload
One credit equals 27 hours of work, which means that this course needs about 81 working hours.
Further information for students
Assessment criteria: points from the exercises and the exam.
Evaluation scale
0-5
Evaluation criteria, satisfactory (1-2)
Sufficient 1
You are able to recognize phenomena and the models attached to the field of the course.
You can solve simple course related problems. You can read different kinds of tables and graphs to get the right information. Your calculations may have some mistakes.
Satisfactory 2
You are able to understand phenomena and the models attached to the field of the course.
You can solve basic problems with the help of examples. You can read different kinds of tables and graphs to get the right information. Your calculations may have some mistakes.
Evaluation criteria, good (3-4)
Good 3
You are able to understand phenomena and the models attached to the field of the course.
You can solve basic problems. You can read different kinds of tables and graphs and you are also able to produce them yourself. Your calculations may have some mistakes.
Very good 4
You are able to understand phenomena and the models attached to the field of the course.
You can solve challenging problems. You can read different kinds of tables and graphs and you are able to produce them yourself. You are also able to evaluate the assumptions and applicabilities of the models you are using. Your calculations are mainly right.
Evaluation criteria, excellent (5)
Excellent 5
You are able to understand phenomena and the models attached to the field of the course.
You can solve challenging problems. You can read different kinds of tables and graphs and you are able to make make them yourself. You are also able to evaluate the assumptions and applicabilities of the models you are using. You can apply your knowledge to new situations. Your calculations are right but may have some careless errors.
Prerequisites
Basic knowledge of mechanics and elementary functions and ability to solve simple equations is required.
Enrollment
18.11.2024 - 09.01.2025
Timing
13.01.2025 - 19.05.2025
Number of ECTS credits allocated
3 op
Virtual portion
3 op
Mode of delivery
Online learning
Unit
School of Technology
Campus
Main Campus
Teaching languages
- Finnish
Seats
20 - 40
Degree programmes
- Bachelor's Degree Programme in Logistics
Teachers
- Pertti Ahonen
Groups
-
UTIVERKKOInstitute of New Industry, online learning (mechanical, logistics and civil engineering)
Objectives
The object of the course
You will learn the basic concepts of fluid statics and how to apply mathematical methods of mechanics to logistical processes. You will also learn logical thinking and problem solving strategies.
Course competences (Eur-ACE)
EA-KW: You will obtain the basic knowledge and understanding of the concepts of fluid statics.
EA-EC: You will be able to apply engineering to practice.
The learning objectives of the course
After completing this course you are able to identify the basic principles of fluid statics and the mathematical methods of mechanics on logistical processes.
Content
Fluid statics: Hydraulic lift, hydrostatic pressure, Archimedes' principle and buoyant force.
Logistic processes: f.ex. center of mass of the load, cargo securing, stress of lifting accessories and warehouse shelves.
Learning materials and recommended literature
Suvanto, K. Tekniikan FYSIIKKA 1. Edita. All editions.
Teaching methods
- self-study
- distance learning
- exercises
Exam dates and retake possibilities
Online exam (Zoom) and two possible resits. Dates will be announced in the beginning of the course.
Student workload
One credit equals 27 hours of work, which means that this course needs about 81 working hours.
Further information for students
Assessment criteria: points from the exam.
Evaluation scale
0-5
Evaluation criteria, satisfactory (1-2)
Sufficient 1
You are able to recognize phenomena and the models attached to the field of the course.
You can solve simple course related problems. You can read different kinds of tables and graphs to get the right information. Your calculations may have some mistakes.
Satisfactory 2
You are able to understand phenomena and the models attached to the field of the course.
You can solve basic problems with the help of examples. You can read different kinds of tables and graphs to get the right information. Your calculations may have some mistakes.
Evaluation criteria, good (3-4)
Good 3
You are able to understand phenomena and the models attached to the field of the course.
You can solve basic problems. You can read different kinds of tables and graphs and you are also able to produce them yourself. Your calculations may have some mistakes.
Very good 4
You are able to understand phenomena and the models attached to the field of the course.
You can solve challenging problems. You can read different kinds of tables and graphs and you are able to produce them yourself. You are also able to evaluate the assumptions and applicabilities of the models you are using. Your calculations are mainly right.
Evaluation criteria, excellent (5)
Excellent 5
You are able to understand phenomena and the models attached to the field of the course.
You can solve challenging problems. You can read different kinds of tables and graphs and you are able to make make them yourself. You are also able to evaluate the assumptions and applicabilities of the models you are using. You can apply your knowledge to new situations. Your calculations are right but may have some careless errors.
Prerequisites
Basic knowledge of mechanics and elementary functions and ability to solve simple equations is required.
Enrollment
18.11.2024 - 09.01.2025
Timing
13.01.2025 - 30.04.2025
Number of ECTS credits allocated
3 op
Mode of delivery
Face-to-face
Unit
School of Technology
Campus
Main Campus
Teaching languages
- Finnish
Seats
20 - 58
Degree programmes
- Bachelor's Degree Programme in Logistics
Teachers
- Pertti Ahonen
Groups
-
TLS23S1Logistiikka - tutkinto-ohjelma (AMK)
Objectives
The object of the course
You will learn the basic concepts of fluid statics and how to apply mathematical methods of mechanics to logistical processes. You will also learn logical thinking and problem solving strategies.
Course competences (Eur-ACE)
EA-KW: You will obtain the basic knowledge and understanding of the concepts of fluid statics.
EA-EC: You will be able to apply engineering to practice.
The learning objectives of the course
After completing this course you are able to identify the basic principles of fluid statics and the mathematical methods of mechanics on logistical processes.
Content
Fluid statics: Hydraulic lift, hydrostatic pressure, Archimedes' principle and buoyant force.
Logistic processes: f.ex. center of mass of the load, cargo securing, stress of lifting accessories and warehouse shelves.
Learning materials and recommended literature
Suvanto, K. Tekniikan FYSIIKKA 1. Edita. All editions.
Teaching methods
- lessons
- self-study
- exercises
Exam dates and retake possibilities
Exam and two possible resits. Dates and places will be announced in the beginning of the course.
Student workload
One credit equals 27 hours of work, which means that this course needs about 81 working hours.
Further information for students
Assessment criteria: points from the exercises and the exam.
Evaluation scale
0-5
Evaluation criteria, satisfactory (1-2)
Sufficient 1
You are able to recognize phenomena and the models attached to the field of the course.
You can solve simple course related problems. You can read different kinds of tables and graphs to get the right information. Your calculations may have some mistakes.
Satisfactory 2
You are able to understand phenomena and the models attached to the field of the course.
You can solve basic problems with the help of examples. You can read different kinds of tables and graphs to get the right information. Your calculations may have some mistakes.
Evaluation criteria, good (3-4)
Good 3
You are able to understand phenomena and the models attached to the field of the course.
You can solve basic problems. You can read different kinds of tables and graphs and you are also able to produce them yourself. Your calculations may have some mistakes.
Very good 4
You are able to understand phenomena and the models attached to the field of the course.
You can solve challenging problems. You can read different kinds of tables and graphs and you are able to produce them yourself. You are also able to evaluate the assumptions and applicabilities of the models you are using. Your calculations are mainly right.
Evaluation criteria, excellent (5)
Excellent 5
You are able to understand phenomena and the models attached to the field of the course.
You can solve challenging problems. You can read different kinds of tables and graphs and you are able to make make them yourself. You are also able to evaluate the assumptions and applicabilities of the models you are using. You can apply your knowledge to new situations. Your calculations are right but may have some careless errors.
Prerequisites
Basic knowledge of mechanics and elementary functions and ability to solve simple equations is required.
Enrollment
18.11.2024 - 09.01.2025
Timing
13.01.2025 - 30.04.2025
Number of ECTS credits allocated
3 op
Mode of delivery
Face-to-face
Unit
School of Technology
Campus
Main Campus
Teaching languages
- English
Seats
20 - 44
Degree programmes
- Bachelor's Degree Programme in Purchasing and Logistics Engineering
Teachers
- Pertti Ahonen
Groups
-
TLP25VKBachelor's Degree Programme in Purchasing and Logistics Engineering (AMK) vaihto-opiskelu/Exchange studies
-
TLP24VSBachelor's Degree Programme in Purchasing and Logistics Engineering (AMK) vaihto-opiskelu/Exchange studies
-
TLP23S1Bachelor's Degree Programme in Purchasing and Logistics Engineering
Objectives
The object of the course
You will learn the basic concepts of fluid statics and how to apply mathematical methods of mechanics to logistical processes. You will also learn logical thinking and problem solving strategies.
Course competences (Eur-ACE)
EA-KW: You will obtain the basic knowledge and understanding of the concepts of fluid statics.
EA-EC: You will be able to apply engineering to practice.
The learning objectives of the course
After completing this course you are able to identify the basic principles of fluid statics and the mathematical methods of mechanics on logistical processes.
Content
Fluid statics: Hydraulic lift, hydrostatic pressure, Archimedes' principle and buoyant force.
Logistic processes: f.ex. center of mass of the load, cargo securing, stress of lifting accessories and warehouse shelves.
Learning materials and recommended literature
Knight, Randal D. Physics for Scientists and Engineers. Pearson International edition.
Teaching methods
- lessons
- self-study
- exercises
Exam dates and retake possibilities
Exam and two possible resits. Dates and places will be announced in the beginning of the course.
Student workload
One credit equals 27 hours of work, which means that this course needs about 81 working hours.
Further information for students
Assessment criteria: points from the exercises and the exam.
Evaluation scale
0-5
Evaluation criteria, satisfactory (1-2)
Sufficient 1
You are able to recognize phenomena and the models attached to the field of the course.
You can solve simple course related problems. You can read different kinds of tables and graphs to get the right information. Your calculations may have some mistakes.
Satisfactory 2
You are able to understand phenomena and the models attached to the field of the course.
You can solve basic problems with the help of examples. You can read different kinds of tables and graphs to get the right information. Your calculations may have some mistakes.
Evaluation criteria, good (3-4)
Good 3
You are able to understand phenomena and the models attached to the field of the course.
You can solve basic problems. You can read different kinds of tables and graphs and you are also able to produce them yourself. Your calculations may have some mistakes.
Very good 4
You are able to understand phenomena and the models attached to the field of the course.
You can solve challenging problems. You can read different kinds of tables and graphs and you are able to produce them yourself. You are also able to evaluate the assumptions and applicabilities of the models you are using. Your calculations are mainly right.
Evaluation criteria, excellent (5)
Excellent 5
You are able to understand phenomena and the models attached to the field of the course.
You can solve challenging problems. You can read different kinds of tables and graphs and you are able to make make them yourself. You are also able to evaluate the assumptions and applicabilities of the models you are using. You can apply your knowledge to new situations. Your calculations are right but may have some careless errors.
Prerequisites
Basic knowledge of mechanics and elementary functions and ability to solve simple equations is required.
Enrollment
01.08.2024 - 22.08.2024
Timing
26.08.2024 - 18.12.2024
Number of ECTS credits allocated
3 op
Virtual portion
1.5 op
Mode of delivery
50 % Face-to-face, 50 % Online learning
Unit
School of Technology
Campus
Main Campus
Teaching languages
- Finnish
Seats
20 - 25
Degree programmes
- Bachelor's Degree Programme in Logistics
Teachers
- Pertti Ahonen
Groups
-
TLS23KMMLogistiikka - tutkinto-ohjelma (AMK)
Objectives
The object of the course
You will learn the basic concepts of fluid statics and how to apply mathematical methods of mechanics to logistical processes. You will also learn logical thinking and problem solving strategies.
Course competences (Eur-ACE)
EA-KW: You will obtain the basic knowledge and understanding of the concepts of fluid statics.
EA-EC: You will be able to apply engineering to practice.
The learning objectives of the course
After completing this course you are able to identify the basic principles of fluid statics and the mathematical methods of mechanics on logistical processes.
Content
Fluid statics: Hydraulic lift, hydrostatic pressure, Archimedes' principle and buoyant force.
Logistic processes: f.ex. center of mass of the load, cargo securing, stress of lifting accessories and warehouse shelves.
Learning materials and recommended literature
Suvanto, K. Tekniikan FYSIIKKA 1. Edita. All editions.
Teaching methods
- lessons
- self-study
- exercises
Exam dates and retake possibilities
Exam and two possible resits. Dates and places will be announced in the beginning of the course.
Student workload
One credit equals 27 hours of work, which means that this course needs about 81 working hours.
Further information for students
Assessment criteria: points from the exercises and the exam.
Evaluation scale
0-5
Evaluation criteria, satisfactory (1-2)
Sufficient 1
You are able to recognize phenomena and the models attached to the field of the course.
You can solve simple course related problems. You can read different kinds of tables and graphs to get the right information. Your calculations may have some mistakes.
Satisfactory 2
You are able to understand phenomena and the models attached to the field of the course.
You can solve basic problems with the help of examples. You can read different kinds of tables and graphs to get the right information. Your calculations may have some mistakes.
Evaluation criteria, good (3-4)
Good 3
You are able to understand phenomena and the models attached to the field of the course.
You can solve basic problems. You can read different kinds of tables and graphs and you are also able to produce them yourself. Your calculations may have some mistakes.
Very good 4
You are able to understand phenomena and the models attached to the field of the course.
You can solve challenging problems. You can read different kinds of tables and graphs and you are able to produce them yourself. You are also able to evaluate the assumptions and applicabilities of the models you are using. Your calculations are mainly right.
Evaluation criteria, excellent (5)
Excellent 5
You are able to understand phenomena and the models attached to the field of the course.
You can solve challenging problems. You can read different kinds of tables and graphs and you are able to make make them yourself. You are also able to evaluate the assumptions and applicabilities of the models you are using. You can apply your knowledge to new situations. Your calculations are right but may have some careless errors.
Prerequisites
Basic knowledge of mechanics and elementary functions and ability to solve simple equations is required.
Enrollment
01.08.2024 - 22.08.2024
Timing
26.08.2024 - 18.12.2024
Number of ECTS credits allocated
3 op
Virtual portion
3 op
Mode of delivery
Online learning
Unit
School of Technology
Campus
Main Campus
Teaching languages
- Finnish
Seats
10 - 15
Degree programmes
- Bachelor's Degree Programme in Logistics
Teachers
- Pertti Ahonen
Groups
-
UTIVERKKOInstitute of New Industry, online learning (mechanical, logistics and civil engineering)
Objectives
The object of the course
You will learn the basic concepts of fluid statics and how to apply mathematical methods of mechanics to logistical processes. You will also learn logical thinking and problem solving strategies.
Course competences (Eur-ACE)
EA-KW: You will obtain the basic knowledge and understanding of the concepts of fluid statics.
EA-EC: You will be able to apply engineering to practice.
The learning objectives of the course
After completing this course you are able to identify the basic principles of fluid statics and the mathematical methods of mechanics on logistical processes.
Content
Fluid statics: Hydraulic lift, hydrostatic pressure, Archimedes' principle and buoyant force.
Logistic processes: f.ex. center of mass of the load, cargo securing, stress of lifting accessories and warehouse shelves.
Learning materials and recommended literature
Suvanto, K. Tekniikan FYSIIKKA 1. Edita. All editions.
Teaching methods
- self-study
- distance learning
- exercises
Exam dates and retake possibilities
Online exam (Zoom) and two possible resits. Dates will be announced in the beginning of the course.
Student workload
One credit equals 27 hours of work, which means that this course needs about 81 working hours.
Further information for students
Assessment criteria: points from the exam.
Evaluation scale
0-5
Evaluation criteria, satisfactory (1-2)
Sufficient 1
You are able to recognize phenomena and the models attached to the field of the course.
You can solve simple course related problems. You can read different kinds of tables and graphs to get the right information. Your calculations may have some mistakes.
Satisfactory 2
You are able to understand phenomena and the models attached to the field of the course.
You can solve basic problems with the help of examples. You can read different kinds of tables and graphs to get the right information. Your calculations may have some mistakes.
Evaluation criteria, good (3-4)
Good 3
You are able to understand phenomena and the models attached to the field of the course.
You can solve basic problems. You can read different kinds of tables and graphs and you are also able to produce them yourself. Your calculations may have some mistakes.
Very good 4
You are able to understand phenomena and the models attached to the field of the course.
You can solve challenging problems. You can read different kinds of tables and graphs and you are able to produce them yourself. You are also able to evaluate the assumptions and applicabilities of the models you are using. Your calculations are mainly right.
Evaluation criteria, excellent (5)
Excellent 5
You are able to understand phenomena and the models attached to the field of the course.
You can solve challenging problems. You can read different kinds of tables and graphs and you are able to make make them yourself. You are also able to evaluate the assumptions and applicabilities of the models you are using. You can apply your knowledge to new situations. Your calculations are right but may have some careless errors.
Prerequisites
Basic knowledge of mechanics and elementary functions and ability to solve simple equations is required.
Enrollment
01.04.2024 - 30.04.2024
Timing
01.05.2024 - 31.08.2024
Number of ECTS credits allocated
3 op
Virtual portion
3 op
Mode of delivery
Online learning
Unit
School of Technology
Campus
Main Campus
Teaching languages
- Finnish
Seats
0 - 20
Degree programmes
- Bachelor's Degree Programme in Logistics
Teachers
- Pertti Ahonen
Groups
-
UTIVERKKOInstitute of New Industry, online learning (mechanical, logistics and civil engineering)
Objectives
The object of the course
You will learn the basic concepts of fluid statics and how to apply mathematical methods of mechanics to logistical processes. You will also learn logical thinking and problem solving strategies.
Course competences (Eur-ACE)
EA-KW: You will obtain the basic knowledge and understanding of the concepts of fluid statics.
EA-EC: You will be able to apply engineering to practice.
The learning objectives of the course
After completing this course you are able to identify the basic principles of fluid statics and the mathematical methods of mechanics on logistical processes.
Content
Fluid statics: Hydraulic lift, hydrostatic pressure, Archimedes' principle and buoyant force.
Logistic processes: f.ex. center of mass of the load, cargo securing, stress of lifting accessories and warehouse shelves.
Learning materials and recommended literature
Suvanto, K. Tekniikan FYSIIKKA 1. Edita. All editions.
Teaching methods
- self-study
- distance learning
- exercises
Exam dates and retake possibilities
Online exam (Zoom) and two possible resits. Dates will be announced in the beginning of the course.
Student workload
One credit equals 27 hours of work, which means that this course needs about 81 working hours.
Further information for students
Assessment criteria: points from the exam.
Evaluation scale
0-5
Evaluation criteria, satisfactory (1-2)
Sufficient 1
You are able to recognize phenomena and the models attached to the field of the course.
You can solve simple course related problems. You can read different kinds of tables and graphs to get the right information. Your calculations may have some mistakes.
Satisfactory 2
You are able to understand phenomena and the models attached to the field of the course.
You can solve basic problems with the help of examples. You can read different kinds of tables and graphs to get the right information. Your calculations may have some mistakes.
Evaluation criteria, good (3-4)
Good 3
You are able to understand phenomena and the models attached to the field of the course.
You can solve basic problems. You can read different kinds of tables and graphs and you are also able to produce them yourself. Your calculations may have some mistakes.
Very good 4
You are able to understand phenomena and the models attached to the field of the course.
You can solve challenging problems. You can read different kinds of tables and graphs and you are able to produce them yourself. You are also able to evaluate the assumptions and applicabilities of the models you are using. Your calculations are mainly right.
Evaluation criteria, excellent (5)
Excellent 5
You are able to understand phenomena and the models attached to the field of the course.
You can solve challenging problems. You can read different kinds of tables and graphs and you are able to make make them yourself. You are also able to evaluate the assumptions and applicabilities of the models you are using. You can apply your knowledge to new situations. Your calculations are right but may have some careless errors.
Prerequisites
Basic knowledge of mechanics and elementary functions and ability to solve simple equations is required.
Enrollment
01.04.2024 - 30.04.2024
Timing
01.05.2024 - 31.08.2024
Number of ECTS credits allocated
3 op
Virtual portion
3 op
Mode of delivery
Online learning
Unit
School of Technology
Campus
Main Campus
Teaching languages
- English
Seats
0 - 10
Degree programmes
- Bachelor's Degree Programme in Purchasing and Logistics Engineering
Teachers
- Pertti Ahonen
Groups
-
UTIVERKKOInstitute of New Industry, online learning (mechanical, logistics and civil engineering)
Objectives
The object of the course
You will learn the basic concepts of fluid statics and how to apply mathematical methods of mechanics to logistical processes. You will also learn logical thinking and problem solving strategies.
Course competences (Eur-ACE)
EA-KW: You will obtain the basic knowledge and understanding of the concepts of fluid statics.
EA-EC: You will be able to apply engineering to practice.
The learning objectives of the course
After completing this course you are able to identify the basic principles of fluid statics and the mathematical methods of mechanics on logistical processes.
Content
Fluid statics: Hydraulic lift, hydrostatic pressure, Archimedes' principle and buoyant force.
Logistic processes: f.ex. center of mass of the load, cargo securing, stress of lifting accessories and warehouse shelves.
Learning materials and recommended literature
Knight, Randal D. Physics for Scientists and Engineers. Pearson International edition.
Teaching methods
- self-study
- distance learning
- exercises
Exam dates and retake possibilities
Online exam (Zoom) and two possible resits. Dates will be announced in the beginning of the course.
Student workload
One credit equals 27 hours of work, which means that this course needs about 81 working hours.
Further information for students
Assessment criteria: points from the exam
Evaluation scale
0-5
Evaluation criteria, satisfactory (1-2)
Sufficient 1
You are able to recognize phenomena and the models attached to the field of the course.
You can solve simple course related problems. You can read different kinds of tables and graphs to get the right information. Your calculations may have some mistakes.
Satisfactory 2
You are able to understand phenomena and the models attached to the field of the course.
You can solve basic problems with the help of examples. You can read different kinds of tables and graphs to get the right information. Your calculations may have some mistakes.
Evaluation criteria, good (3-4)
Good 3
You are able to understand phenomena and the models attached to the field of the course.
You can solve basic problems. You can read different kinds of tables and graphs and you are also able to produce them yourself. Your calculations may have some mistakes.
Very good 4
You are able to understand phenomena and the models attached to the field of the course.
You can solve challenging problems. You can read different kinds of tables and graphs and you are able to produce them yourself. You are also able to evaluate the assumptions and applicabilities of the models you are using. Your calculations are mainly right.
Evaluation criteria, excellent (5)
Excellent 5
You are able to understand phenomena and the models attached to the field of the course.
You can solve challenging problems. You can read different kinds of tables and graphs and you are able to make make them yourself. You are also able to evaluate the assumptions and applicabilities of the models you are using. You can apply your knowledge to new situations. Your calculations are right but may have some careless errors.
Prerequisites
Basic knowledge of mechanics and elementary functions and ability to solve simple equations is required.
Enrollment
20.11.2023 - 04.01.2024
Timing
08.01.2024 - 19.05.2024
Number of ECTS credits allocated
3 op
Virtual portion
3 op
Mode of delivery
Online learning
Unit
School of Technology
Campus
Main Campus
Teaching languages
- Finnish
Seats
0 - 15
Degree programmes
- Bachelor's Degree Programme in Logistics
Teachers
- Pertti Ahonen
Groups
-
UTIVERKKOInstitute of New Industry, online learning (mechanical, logistics and civil engineering)
Objectives
The object of the course
You will learn the basic concepts of fluid statics and how to apply mathematical methods of mechanics to logistical processes. You will also learn logical thinking and problem solving strategies.
Course competences (Eur-ACE)
EA-KW: You will obtain the basic knowledge and understanding of the concepts of fluid statics.
EA-EC: You will be able to apply engineering to practice.
The learning objectives of the course
After completing this course you are able to identify the basic principles of fluid statics and the mathematical methods of mechanics on logistical processes.
Content
Fluid statics: Hydraulic lift, hydrostatic pressure, Archimedes' principle and buoyant force.
Logistic processes: f.ex. center of mass of the load, cargo securing, stress of lifting accessories and warehouse shelves.
Learning materials and recommended literature
Suvanto, K. Tekniikan FYSIIKKA 1. Edita. All editions.
Teaching methods
- self-study
- distance learning
- exercises
Exam dates and retake possibilities
Online exam (Zoom) and two possible resits. Dates will be announced in the beginning of the course.
Student workload
One credit equals 27 hours of work, which means that this course needs about 81 working hours.
Further information for students
Assessment criteria: points from the exam.
Evaluation scale
0-5
Evaluation criteria, satisfactory (1-2)
Sufficient 1
You are able to recognize phenomena and the models attached to the field of the course.
You can solve simple course related problems. You can read different kinds of tables and graphs to get the right information. Your calculations may have some mistakes.
Satisfactory 2
You are able to understand phenomena and the models attached to the field of the course.
You can solve basic problems with the help of examples. You can read different kinds of tables and graphs to get the right information. Your calculations may have some mistakes.
Evaluation criteria, good (3-4)
Good 3
You are able to understand phenomena and the models attached to the field of the course.
You can solve basic problems. You can read different kinds of tables and graphs and you are also able to produce them yourself. Your calculations may have some mistakes.
Very good 4
You are able to understand phenomena and the models attached to the field of the course.
You can solve challenging problems. You can read different kinds of tables and graphs and you are able to produce them yourself. You are also able to evaluate the assumptions and applicabilities of the models you are using. Your calculations are mainly right.
Evaluation criteria, excellent (5)
Excellent 5
You are able to understand phenomena and the models attached to the field of the course.
You can solve challenging problems. You can read different kinds of tables and graphs and you are able to make make them yourself. You are also able to evaluate the assumptions and applicabilities of the models you are using. You can apply your knowledge to new situations. Your calculations are right but may have some careless errors.
Prerequisites
Basic knowledge of mechanics and elementary functions and ability to solve simple equations is required.
Enrollment
20.11.2023 - 04.01.2024
Timing
08.01.2024 - 20.05.2024
Number of ECTS credits allocated
3 op
Virtual portion
2 op
Mode of delivery
34 % Face-to-face, 66 % Online learning
Unit
School of Technology
Campus
Main Campus
Teaching languages
- Finnish
Seats
0 - 30
Degree programmes
- Bachelor's Degree Programme in Logistics
Teachers
- Pertti Ahonen
Groups
-
TLS22SMMLogistiikka - tutkinto-ohjelma (AMK)
Objectives
The object of the course
You will learn the basic concepts of fluid statics and how to apply mathematical methods of mechanics to logistical processes. You will also learn logical thinking and problem solving strategies.
Course competences (Eur-ACE)
EA-KW: You will obtain the basic knowledge and understanding of the concepts of fluid statics.
EA-EC: You will be able to apply engineering to practice.
The learning objectives of the course
After completing this course you are able to identify the basic principles of fluid statics and the mathematical methods of mechanics on logistical processes.
Content
Fluid statics: Hydraulic lift, hydrostatic pressure, Archimedes' principle and buoyant force.
Logistic processes: f.ex. center of mass of the load, cargo securing, stress of lifting accessories and warehouse shelves.
Learning materials and recommended literature
Suvanto, K. Tekniikan FYSIIKKA 1. Edita. All editions.
Teaching methods
- lessons
- self-study
- exercises
Exam dates and retake possibilities
Exam and two possible resits. Dates and places will be announced in the beginning of the course.
Student workload
One credit equals 27 hours of work, which means that this course needs about 81 working hours.
Further information for students
Assessment criteria: points from the exercises and the exam.
Evaluation scale
0-5
Evaluation criteria, satisfactory (1-2)
Sufficient 1
You are able to recognize phenomena and the models attached to the field of the course.
You can solve simple course related problems. You can read different kinds of tables and graphs to get the right information. Your calculations may have some mistakes.
Satisfactory 2
You are able to understand phenomena and the models attached to the field of the course.
You can solve basic problems with the help of examples. You can read different kinds of tables and graphs to get the right information. Your calculations may have some mistakes.
Evaluation criteria, good (3-4)
Good 3
You are able to understand phenomena and the models attached to the field of the course.
You can solve basic problems. You can read different kinds of tables and graphs and you are also able to produce them yourself. Your calculations may have some mistakes.
Very good 4
You are able to understand phenomena and the models attached to the field of the course.
You can solve challenging problems. You can read different kinds of tables and graphs and you are able to produce them yourself. You are also able to evaluate the assumptions and applicabilities of the models you are using. Your calculations are mainly right.
Evaluation criteria, excellent (5)
Excellent 5
You are able to understand phenomena and the models attached to the field of the course.
You can solve challenging problems. You can read different kinds of tables and graphs and you are able to make make them yourself. You are also able to evaluate the assumptions and applicabilities of the models you are using. You can apply your knowledge to new situations. Your calculations are right but may have some careless errors.
Prerequisites
Basic knowledge of mechanics and elementary functions and ability to solve simple equations is required.
Enrollment
20.11.2023 - 04.01.2024
Timing
08.01.2024 - 30.04.2024
Number of ECTS credits allocated
3 op
Mode of delivery
Face-to-face
Unit
School of Technology
Campus
Main Campus
Teaching languages
- Finnish
Seats
0 - 55
Degree programmes
- Bachelor's Degree Programme in Logistics
Teachers
- Pertti Ahonen
Groups
-
TLS22S1Logistiikka - tutkinto-ohjelma (AMK)
Objectives
The object of the course
You will learn the basic concepts of fluid statics and how to apply mathematical methods of mechanics to logistical processes. You will also learn logical thinking and problem solving strategies.
Course competences (Eur-ACE)
EA-KW: You will obtain the basic knowledge and understanding of the concepts of fluid statics.
EA-EC: You will be able to apply engineering to practice.
The learning objectives of the course
After completing this course you are able to identify the basic principles of fluid statics and the mathematical methods of mechanics on logistical processes.
Content
Fluid statics: Hydraulic lift, hydrostatic pressure, Archimedes' principle and buoyant force.
Logistic processes: f.ex. center of mass of the load, cargo securing, stress of lifting accessories and warehouse shelves.
Learning materials and recommended literature
Suvanto, K. Tekniikan FYSIIKKA 1. Edita. All editions.
Teaching methods
- lessons
- self-study
- exercises
Exam dates and retake possibilities
Exam and two possible resits. Dates and places will be announced in the beginning of the course.
Student workload
One credit equals 27 hours of work, which means that this course needs about 81 working hours.
Further information for students
Assessment criteria: points from the exercises and the exam.
Evaluation scale
0-5
Evaluation criteria, satisfactory (1-2)
Sufficient 1
You are able to recognize phenomena and the models attached to the field of the course.
You can solve simple course related problems. You can read different kinds of tables and graphs to get the right information. Your calculations may have some mistakes.
Satisfactory 2
You are able to understand phenomena and the models attached to the field of the course.
You can solve basic problems with the help of examples. You can read different kinds of tables and graphs to get the right information. Your calculations may have some mistakes.
Evaluation criteria, good (3-4)
Good 3
You are able to understand phenomena and the models attached to the field of the course.
You can solve basic problems. You can read different kinds of tables and graphs and you are also able to produce them yourself. Your calculations may have some mistakes.
Very good 4
You are able to understand phenomena and the models attached to the field of the course.
You can solve challenging problems. You can read different kinds of tables and graphs and you are able to produce them yourself. You are also able to evaluate the assumptions and applicabilities of the models you are using. Your calculations are mainly right.
Evaluation criteria, excellent (5)
Excellent 5
You are able to understand phenomena and the models attached to the field of the course.
You can solve challenging problems. You can read different kinds of tables and graphs and you are able to make make them yourself. You are also able to evaluate the assumptions and applicabilities of the models you are using. You can apply your knowledge to new situations. Your calculations are right but may have some careless errors.
Prerequisites
Basic knowledge of mechanics and elementary functions and ability to solve simple equations is required.
Enrollment
20.11.2023 - 14.01.2024
Timing
08.01.2024 - 30.04.2024
Number of ECTS credits allocated
3 op
Mode of delivery
Face-to-face
Unit
School of Technology
Campus
Main Campus
Teaching languages
- English
Seats
0 - 30
Degree programmes
- Bachelor's Degree Programme in Purchasing and Logistics Engineering
Teachers
- Pertti Ahonen
Groups
-
TLP22S1Bachelor's Degree Programme in Purchasing and Logistics Engineering
-
TLP23VSBachelor's Degree Programme in Purchasing and Logistics Engineering (AMK) vaihto-opiskelu/Exchange studies
-
TLP24VKBachelor's Degree Programme in Purchasing and Logistics Engineering (AMK) vaihto-opiskelu/Exchange studies
Objectives
The object of the course
You will learn the basic concepts of fluid statics and how to apply mathematical methods of mechanics to logistical processes. You will also learn logical thinking and problem solving strategies.
Course competences (Eur-ACE)
EA-KW: You will obtain the basic knowledge and understanding of the concepts of fluid statics.
EA-EC: You will be able to apply engineering to practice.
The learning objectives of the course
After completing this course you are able to identify the basic principles of fluid statics and the mathematical methods of mechanics on logistical processes.
Content
Fluid statics: Hydraulic lift, hydrostatic pressure, Archimedes' principle and buoyant force.
Logistic processes: f.ex. center of mass of the load, cargo securing, stress of lifting accessories and warehouse shelves.
Learning materials and recommended literature
Knight, Randal D. Physics for Scientists and Engineers. Pearson International edition.
Teaching methods
- lessons
- self-study
- exercises
Exam dates and retake possibilities
Exam and two possible resits. Dates and places will be announced in the beginning of the course.
Student workload
One credit equals 27 hours of work, which means that this course needs about 81 working hours.
Further information for students
Assessment criteria: points from the exercises and the exam.
Evaluation scale
0-5
Evaluation criteria, satisfactory (1-2)
Sufficient 1
You are able to recognize phenomena and the models attached to the field of the course.
You can solve simple course related problems. You can read different kinds of tables and graphs to get the right information. Your calculations may have some mistakes.
Satisfactory 2
You are able to understand phenomena and the models attached to the field of the course.
You can solve basic problems with the help of examples. You can read different kinds of tables and graphs to get the right information. Your calculations may have some mistakes.
Evaluation criteria, good (3-4)
Good 3
You are able to understand phenomena and the models attached to the field of the course.
You can solve basic problems. You can read different kinds of tables and graphs and you are also able to produce them yourself. Your calculations may have some mistakes.
Very good 4
You are able to understand phenomena and the models attached to the field of the course.
You can solve challenging problems. You can read different kinds of tables and graphs and you are able to produce them yourself. You are also able to evaluate the assumptions and applicabilities of the models you are using. Your calculations are mainly right.
Evaluation criteria, excellent (5)
Excellent 5
You are able to understand phenomena and the models attached to the field of the course.
You can solve challenging problems. You can read different kinds of tables and graphs and you are able to make make them yourself. You are also able to evaluate the assumptions and applicabilities of the models you are using. You can apply your knowledge to new situations. Your calculations are right but may have some careless errors.
Prerequisites
Basic knowledge of mechanics and elementary functions and ability to solve simple equations is required.
Enrollment
01.08.2023 - 24.08.2023
Timing
28.08.2023 - 19.12.2023
Number of ECTS credits allocated
3 op
Virtual portion
3 op
Mode of delivery
Online learning
Unit
School of Technology
Campus
Main Campus
Teaching languages
- Finnish
Seats
0 - 15
Degree programmes
- Bachelor's Degree Programme in Logistics
Teachers
- Pertti Ahonen
Groups
-
UTIVERKKOInstitute of New Industry, online learning (mechanical, logistics and civil engineering)
Objectives
The object of the course
You will learn the basic concepts of fluid statics and how to apply mathematical methods of mechanics to logistical processes. You will also learn logical thinking and problem solving strategies.
Course competences (Eur-ACE)
EA-KW: You will obtain the basic knowledge and understanding of the concepts of fluid statics.
EA-EC: You will be able to apply engineering to practice.
The learning objectives of the course
After completing this course you are able to identify the basic principles of fluid statics and the mathematical methods of mechanics on logistical processes.
Content
Fluid statics: Hydraulic lift, hydrostatic pressure, Archimedes' principle and buoyant force.
Logistic processes: f.ex. center of mass of the load, cargo securing, stress of lifting accessories and warehouse shelves.
Learning materials and recommended literature
Suvanto, K. Tekniikan FYSIIKKA 1. Edita. All editions.
Teaching methods
- self-study
- distance learning
- exercises
Exam dates and retake possibilities
Online exam (Zoom) and two possible resits. Dates will be announced in the beginning of the course.
Student workload
One credit equals 27 hours of work, which means that this course needs about 81 working hours.
Further information for students
Assessment criteria: points from the exam.
Evaluation scale
0-5
Evaluation criteria, satisfactory (1-2)
Sufficient 1
You are able to recognize phenomena and the models attached to the field of the course.
You can solve simple course related problems. You can read different kinds of tables and graphs to get the right information. Your calculations may have some mistakes.
Satisfactory 2
You are able to understand phenomena and the models attached to the field of the course.
You can solve basic problems with the help of examples. You can read different kinds of tables and graphs to get the right information. Your calculations may have some mistakes.
Evaluation criteria, good (3-4)
Good 3
You are able to understand phenomena and the models attached to the field of the course.
You can solve basic problems. You can read different kinds of tables and graphs and you are also able to produce them yourself. Your calculations may have some mistakes.
Very good 4
You are able to understand phenomena and the models attached to the field of the course.
You can solve challenging problems. You can read different kinds of tables and graphs and you are able to produce them yourself. You are also able to evaluate the assumptions and applicabilities of the models you are using. Your calculations are mainly right.
Evaluation criteria, excellent (5)
Excellent 5
You are able to understand phenomena and the models attached to the field of the course.
You can solve challenging problems. You can read different kinds of tables and graphs and you are able to make make them yourself. You are also able to evaluate the assumptions and applicabilities of the models you are using. You can apply your knowledge to new situations. Your calculations are right but may have some careless errors.
Prerequisites
Basic knowledge of mechanics and elementary functions and ability to solve simple equations is required.
Enrollment
01.08.2023 - 24.08.2023
Timing
28.08.2023 - 19.12.2023
Number of ECTS credits allocated
3 op
Virtual portion
2 op
Mode of delivery
34 % Face-to-face, 66 % Online learning
Unit
School of Technology
Campus
Main Campus
Teaching languages
- Finnish
Seats
0 - 15
Degree programmes
- Bachelor's Degree Programme in Logistics
Teachers
- Pertti Ahonen
Groups
-
TLS22KMMLogistiikan tutkinto-ohjelma (AMK)
Objectives
The object of the course
You will learn the basic concepts of fluid statics and how to apply mathematical methods of mechanics to logistical processes. You will also learn logical thinking and problem solving strategies.
Course competences (Eur-ACE)
EA-KW: You will obtain the basic knowledge and understanding of the concepts of fluid statics.
EA-EC: You will be able to apply engineering to practice.
The learning objectives of the course
After completing this course you are able to identify the basic principles of fluid statics and the mathematical methods of mechanics on logistical processes.
Content
Fluid statics: Hydraulic lift, hydrostatic pressure, Archimedes' principle and buoyant force.
Logistic processes: f.ex. center of mass of the load, cargo securing, stress of lifting accessories and warehouse shelves.
Learning materials and recommended literature
Suvanto, K. Tekniikan FYSIIKKA 1. Edita. All editions.
Teaching methods
- lessons
- self-study
- exercises
Exam dates and retake possibilities
Exam and two possible resits. Dates and places will be announced in the beginning of the course.
Student workload
One credit equals 27 hours of work, which means that this course needs about 81 working hours.
Further information for students
Assessment criteria: points from the exercises and the exam.
Evaluation scale
0-5
Evaluation criteria, satisfactory (1-2)
Sufficient 1
You are able to recognize phenomena and the models attached to the field of the course.
You can solve simple course related problems. You can read different kinds of tables and graphs to get the right information. Your calculations may have some mistakes.
Satisfactory 2
You are able to understand phenomena and the models attached to the field of the course.
You can solve basic problems with the help of examples. You can read different kinds of tables and graphs to get the right information. Your calculations may have some mistakes.
Evaluation criteria, good (3-4)
Good 3
You are able to understand phenomena and the models attached to the field of the course.
You can solve basic problems. You can read different kinds of tables and graphs and you are also able to produce them yourself. Your calculations may have some mistakes.
Very good 4
You are able to understand phenomena and the models attached to the field of the course.
You can solve challenging problems. You can read different kinds of tables and graphs and you are able to produce them yourself. You are also able to evaluate the assumptions and applicabilities of the models you are using. Your calculations are mainly right.
Evaluation criteria, excellent (5)
Excellent 5
You are able to understand phenomena and the models attached to the field of the course.
You can solve challenging problems. You can read different kinds of tables and graphs and you are able to make make them yourself. You are also able to evaluate the assumptions and applicabilities of the models you are using. You can apply your knowledge to new situations. Your calculations are right but may have some careless errors.
Prerequisites
Basic knowledge of mechanics and elementary functions and ability to solve simple equations is required.
Enrollment
01.04.2023 - 30.04.2023
Timing
01.05.2023 - 31.08.2023
Number of ECTS credits allocated
3 op
Virtual portion
3 op
Mode of delivery
Online learning
Unit
School of Technology
Campus
Main Campus
Teaching languages
- Finnish
Seats
0 - 5
Degree programmes
- Bachelor's Degree Programme in Logistics
- Bachelor's Degree Programme in Purchasing and Logistics Engineering
Teachers
- Pertti Ahonen
Teacher in charge
Pertti Ahonen
Groups
-
LOGRAKVERKKOLogistiikan ja rakentamisen verkko-opetus
Objectives
The object of the course
You will learn the basic concepts of fluid statics and how to apply mathematical methods of mechanics to logistical processes. You will also learn logical thinking and problem solving strategies.
Course competences (Eur-ACE)
EA-KW: You will obtain the basic knowledge and understanding of the concepts of fluid statics.
EA-EC: You will be able to apply engineering to practice.
The learning objectives of the course
After completing this course you are able to identify the basic principles of fluid statics and the mathematical methods of mechanics on logistical processes.
Content
Fluid statics: Hydraulic lift, hydrostatic pressure, Archimedes' principle and buoyant force.
Logistic processes: f.ex. center of mass of the load, cargo securing, stress of lifting accessories and warehouse shelves.
Learning materials and recommended literature
Suvanto, K. Tekniikan FYSIIKKA 1. Edita. All editions.
Teaching methods
- distance learning
- exercises
- learning tasks
Exam dates and retake possibilities
Online exam (Zoom) and two possible resits. Dates will be announced in the beginning of the course.
Student workload
One credit equals 27 hours of work, which means that this course needs about 81 working hours.
Further information for students
Assessment criteria: points from exercises and the exam.
Evaluation scale
0-5
Evaluation criteria, satisfactory (1-2)
Sufficient 1
You are able to recognize phenomena and the models attached to the field of the course.
You can solve simple course related problems. You can read different kinds of tables and graphs to get the right information. Your calculations may have some mistakes.
Satisfactory 2
You are able to understand phenomena and the models attached to the field of the course.
You can solve basic problems with the help of examples. You can read different kinds of tables and graphs to get the right information. Your calculations may have some mistakes.
Evaluation criteria, good (3-4)
Good 3
You are able to understand phenomena and the models attached to the field of the course.
You can solve basic problems. You can read different kinds of tables and graphs and you are also able to produce them yourself. Your calculations may have some mistakes.
Very good 4
You are able to understand phenomena and the models attached to the field of the course.
You can solve challenging problems. You can read different kinds of tables and graphs and you are able to produce them yourself. You are also able to evaluate the assumptions and applicabilities of the models you are using. Your calculations are mainly right.
Evaluation criteria, excellent (5)
Excellent 5
You are able to understand phenomena and the models attached to the field of the course.
You can solve challenging problems. You can read different kinds of tables and graphs and you are able to make make them yourself. You are also able to evaluate the assumptions and applicabilities of the models you are using. You can apply your knowledge to new situations. Your calculations are right but may have some careless errors.
Prerequisites
Basic knowledge of mechanics and elementary functions and ability to solve simple equations is required.
Enrollment
01.04.2023 - 30.04.2023
Timing
01.05.2023 - 31.08.2023
Number of ECTS credits allocated
3 op
Virtual portion
3 op
Mode of delivery
Online learning
Unit
School of Technology
Campus
Main Campus
Teaching languages
- English
Degree programmes
- Bachelor's Degree Programme in Purchasing and Logistics Engineering
Teachers
- Pertti Ahonen
Teacher in charge
Pertti Ahonen
Groups
-
LOGRAKVERKKOLogistiikan ja rakentamisen verkko-opetus
Objectives
The object of the course
You will learn the basic concepts of fluid statics and how to apply mathematical methods of mechanics to logistical processes. You will also learn logical thinking and problem solving strategies.
Course competences (Eur-ACE)
EA-KW: You will obtain the basic knowledge and understanding of the concepts of fluid statics.
EA-EC: You will be able to apply engineering to practice.
The learning objectives of the course
After completing this course you are able to identify the basic principles of fluid statics and the mathematical methods of mechanics on logistical processes.
Content
Fluid statics: Hydraulic lift, hydrostatic pressure, Archimedes' principle and buoyant force.
Logistic processes: f.ex. center of mass of the load, cargo securing, stress of lifting accessories and warehouse shelves.
Learning materials and recommended literature
Knight, Randal D. Physics for Scientists and Engineers. Pearson International edition. 2nd edition.
Teaching methods
-distance learning
-exercises
Exam dates and retake possibilities
The dates and methods of the exams will be announced on Moodle.
Student workload
One credit corresponds to an average of 27 hours of work, which means that this course needs approximately 81 hours hours of work.
Further information for students
Assessment criteria: points from exercises and the exam
Evaluation scale
0-5
Evaluation criteria, satisfactory (1-2)
Sufficient 1
You are able to recognize phenomena and the models attached to the field of the course.
You can solve simple course related problems. You can read different kinds of tables and graphs to get the right information. Your calculations may have some mistakes.
Satisfactory 2
You are able to understand phenomena and the models attached to the field of the course.
You can solve basic problems with the help of examples. You can read different kinds of tables and graphs to get the right information. Your calculations may have some mistakes.
Evaluation criteria, good (3-4)
Good 3
You are able to understand phenomena and the models attached to the field of the course.
You can solve basic problems. You can read different kinds of tables and graphs and you are also able to produce them yourself. Your calculations may have some mistakes.
Very good 4
You are able to understand phenomena and the models attached to the field of the course.
You can solve challenging problems. You can read different kinds of tables and graphs and you are able to produce them yourself. You are also able to evaluate the assumptions and applicabilities of the models you are using. Your calculations are mainly right.
Evaluation criteria, excellent (5)
Excellent 5
You are able to understand phenomena and the models attached to the field of the course.
You can solve challenging problems. You can read different kinds of tables and graphs and you are able to make make them yourself. You are also able to evaluate the assumptions and applicabilities of the models you are using. You can apply your knowledge to new situations. Your calculations are right but may have some careless errors.
Prerequisites
Basic knowledge of mechanics and elementary functions and ability to solve simple equations is required.
Enrollment
01.11.2022 - 05.01.2023
Timing
09.01.2023 - 19.05.2023
Number of ECTS credits allocated
3 op
Virtual portion
3 op
Mode of delivery
Online learning
Unit
School of Technology
Campus
Main Campus
Teaching languages
- Finnish
Seats
0 - 5
Degree programmes
- Bachelor's Degree Programme in Logistics
- Bachelor's Degree Programme in Purchasing and Logistics Engineering
Teachers
- Pertti Ahonen
Teacher in charge
Pertti Ahonen
Groups
-
LOGRAKVERKKOLogistiikan ja rakentamisen verkko-opetus
Objectives
The object of the course
You will learn the basic concepts of fluid statics and how to apply mathematical methods of mechanics to logistical processes. You will also learn logical thinking and problem solving strategies.
Course competences (Eur-ACE)
EA-KW: You will obtain the basic knowledge and understanding of the concepts of fluid statics.
EA-EC: You will be able to apply engineering to practice.
The learning objectives of the course
After completing this course you are able to identify the basic principles of fluid statics and the mathematical methods of mechanics on logistical processes.
Content
Fluid statics: Hydraulic lift, hydrostatic pressure, Archimedes' principle and buoyant force.
Logistic processes: f.ex. center of mass of the load, cargo securing, stress of lifting accessories and warehouse shelves.
Learning materials and recommended literature
Suvanto, K. Tekniikan FYSIIKKA 1. Edita. All editions.
Teaching methods
- distance learning
- exercises
- learning tasks
Exam dates and retake possibilities
Online exam (Zoom) and two possible resits. Dates will be announced in the beginning of the course.
Student workload
One credit equals 27 hours of work, which means that this course needs about 81 working hours.
Further information for students
Assessment criteria: points from exercises and the exam.
Evaluation scale
0-5
Evaluation criteria, satisfactory (1-2)
Sufficient 1
You are able to recognize phenomena and the models attached to the field of the course.
You can solve simple course related problems. You can read different kinds of tables and graphs to get the right information. Your calculations may have some mistakes.
Satisfactory 2
You are able to understand phenomena and the models attached to the field of the course.
You can solve basic problems with the help of examples. You can read different kinds of tables and graphs to get the right information. Your calculations may have some mistakes.
Evaluation criteria, good (3-4)
Good 3
You are able to understand phenomena and the models attached to the field of the course.
You can solve basic problems. You can read different kinds of tables and graphs and you are also able to produce them yourself. Your calculations may have some mistakes.
Very good 4
You are able to understand phenomena and the models attached to the field of the course.
You can solve challenging problems. You can read different kinds of tables and graphs and you are able to produce them yourself. You are also able to evaluate the assumptions and applicabilities of the models you are using. Your calculations are mainly right.
Evaluation criteria, excellent (5)
Excellent 5
You are able to understand phenomena and the models attached to the field of the course.
You can solve challenging problems. You can read different kinds of tables and graphs and you are able to make make them yourself. You are also able to evaluate the assumptions and applicabilities of the models you are using. You can apply your knowledge to new situations. Your calculations are right but may have some careless errors.
Prerequisites
Basic knowledge of mechanics and elementary functions and ability to solve simple equations is required.
Enrollment
01.11.2022 - 05.01.2023
Timing
09.01.2023 - 19.05.2023
Number of ECTS credits allocated
3 op
Mode of delivery
Face-to-face
Unit
School of Technology
Campus
Main Campus
Teaching languages
- Finnish
Seats
0 - 55
Degree programmes
- Bachelor's Degree Programme in Logistics
Teachers
- Pertti Ahonen
Teacher in charge
Pertti Ahonen
Groups
-
TLS21S1Logistiikan tutkinto-ohjelma (AMK)
Objectives
The object of the course
You will learn the basic concepts of fluid statics and how to apply mathematical methods of mechanics to logistical processes. You will also learn logical thinking and problem solving strategies.
Course competences (Eur-ACE)
EA-KW: You will obtain the basic knowledge and understanding of the concepts of fluid statics.
EA-EC: You will be able to apply engineering to practice.
The learning objectives of the course
After completing this course you are able to identify the basic principles of fluid statics and the mathematical methods of mechanics on logistical processes.
Content
Fluid statics: Hydraulic lift, hydrostatic pressure, Archimedes' principle and buoyant force.
Logistic processes: f.ex. center of mass of the load, cargo securing, stress of lifting accessories and warehouse shelves.
Learning materials and recommended literature
Suvanto, K. Tekniikan FYSIIKKA 1. Edita. All editions.
Teaching methods
- lessons
- distance learning
- exercises
- learning tasks
Exam dates and retake possibilities
Exam and two possible resits. Dates will be announced in the beginning of the course.
Student workload
One credit equals 27 hours of work, which means that this course needs about 81 working hours.
Further information for students
Assessment criteria: points from exercises and the exam.
Evaluation scale
0-5
Evaluation criteria, satisfactory (1-2)
Sufficient 1
You are able to recognize phenomena and the models attached to the field of the course.
You can solve simple course related problems. You can read different kinds of tables and graphs to get the right information. Your calculations may have some mistakes.
Satisfactory 2
You are able to understand phenomena and the models attached to the field of the course.
You can solve basic problems with the help of examples. You can read different kinds of tables and graphs to get the right information. Your calculations may have some mistakes.
Evaluation criteria, good (3-4)
Good 3
You are able to understand phenomena and the models attached to the field of the course.
You can solve basic problems. You can read different kinds of tables and graphs and you are also able to produce them yourself. Your calculations may have some mistakes.
Very good 4
You are able to understand phenomena and the models attached to the field of the course.
You can solve challenging problems. You can read different kinds of tables and graphs and you are able to produce them yourself. You are also able to evaluate the assumptions and applicabilities of the models you are using. Your calculations are mainly right.
Evaluation criteria, excellent (5)
Excellent 5
You are able to understand phenomena and the models attached to the field of the course.
You can solve challenging problems. You can read different kinds of tables and graphs and you are able to make make them yourself. You are also able to evaluate the assumptions and applicabilities of the models you are using. You can apply your knowledge to new situations. Your calculations are right but may have some careless errors.
Prerequisites
Basic knowledge of mechanics and elementary functions and ability to solve simple equations is required.
Enrollment
01.11.2022 - 05.01.2023
Timing
09.01.2023 - 19.05.2023
Number of ECTS credits allocated
3 op
Mode of delivery
Face-to-face
Unit
School of Technology
Campus
Main Campus
Teaching languages
- English
Seats
0 - 30
Degree programmes
- Bachelor's Degree Programme in Purchasing and Logistics Engineering
Teachers
- Pertti Ahonen
Teacher in charge
Pertti Ahonen
Groups
-
TLP23VKBachelor's Degree Programme in Purchasing and Logistics Engineering (AMK) vaihto-opiskelu/Exchange studies
-
TLP22VSBachelor's Degree Programme in Purchasing and Logistics Engineering (AMK) vaihto-opiskelu/Exchange studies
-
TLP21S1Bachelor's Degree Programme in Purchasing and Logistics Engineering
Objectives
The object of the course
You will learn the basic concepts of fluid statics and how to apply mathematical methods of mechanics to logistical processes. You will also learn logical thinking and problem solving strategies.
Course competences (Eur-ACE)
EA-KW: You will obtain the basic knowledge and understanding of the concepts of fluid statics.
EA-EC: You will be able to apply engineering to practice.
The learning objectives of the course
After completing this course you are able to identify the basic principles of fluid statics and the mathematical methods of mechanics on logistical processes.
Content
Fluid statics: Hydraulic lift, hydrostatic pressure, Archimedes' principle and buoyant force.
Logistic processes: f.ex. center of mass of the load, cargo securing, stress of lifting accessories and warehouse shelves.
Learning materials and recommended literature
Material offered by the teacher.
Textbook: Knight, Randal D. Physics for Scientists and Engineers. Pearson International edition. 2nd edition.
Teaching methods
-lectures
-distance learning
-exercises
-learning tasks
Exam dates and retake possibilities
The dates and methods of the exam and two resits will be announced in the course opening information.
Student workload
One credit corresponds to an average of 27 hours of work, which means that the load of three credits is approximately 81 hours. The load is distributed in different ways depending on the course implementation.
Further information for students
Assessment criteria: exercises, exam
Open AMK: 5
Evaluation scale
0-5
Evaluation criteria, satisfactory (1-2)
Sufficient 1
You are able to recognize phenomena and the models attached to the field of the course.
You can solve simple course related problems. You can read different kinds of tables and graphs to get the right information. Your calculations may have some mistakes.
Satisfactory 2
You are able to understand phenomena and the models attached to the field of the course.
You can solve basic problems with the help of examples. You can read different kinds of tables and graphs to get the right information. Your calculations may have some mistakes.
Evaluation criteria, good (3-4)
Good 3
You are able to understand phenomena and the models attached to the field of the course.
You can solve basic problems. You can read different kinds of tables and graphs and you are also able to produce them yourself. Your calculations may have some mistakes.
Very good 4
You are able to understand phenomena and the models attached to the field of the course.
You can solve challenging problems. You can read different kinds of tables and graphs and you are able to produce them yourself. You are also able to evaluate the assumptions and applicabilities of the models you are using. Your calculations are mainly right.
Evaluation criteria, excellent (5)
Excellent 5
You are able to understand phenomena and the models attached to the field of the course.
You can solve challenging problems. You can read different kinds of tables and graphs and you are able to make make them yourself. You are also able to evaluate the assumptions and applicabilities of the models you are using. You can apply your knowledge to new situations. Your calculations are right but may have some careless errors.
Prerequisites
Basic knowledge of mechanics and elementary functions and ability to solve simple equations is required.