Deep Learning and Neural NetworksLaajuus (5 cr)
Code: YTIP2400
Credits
5 op
Teaching language
- English
Responsible person
- Mika Rantonen
Objective
The student understands the significance of deep learning in the digitalizing operational environment and knows the type and structure of neural network.
The student knows about the most common methods of deep learning and how to desing and apply them in practice to the data and interpret the results of the methods. In addition, the student undestands the mathematic behind the neural networks.
Course competences:
EUYIV EUR-ACE: Investigations, Master's Degree
EUYER EUR-ACE: Engineering Practice, Master's Degree
EUYMJ EUR-ACE: Making Judgements, Master's Degree
Content
- Structure of neural network vs artificial neural network
- Neural network Architecture
- Different types of neural networks and their applications: CNN, RNN, LSTM, autocorrelation, autoencoder (CAN) etc.
- Mathematic behind the neural network
- Feature engineering
- Training process of neural network
- Loss, Loss functions and Metrics
- Undefitting and Overfitting
- Estimate and interpret the results
- Regularization
- Hyperparameter tuning
- Transfer and Active Learning
Assessment criteria, satisfactory (1)
Sufficient 1: Student has sufficient knowledge of deep learning and neural networks. Student is able to apply the most common techniques of deep learning and has the sufficient knowledge of mathematic behind the technigues. Additionally, the student is able to estimate and validate implementation briefly.
Satisfactory 2: Student has satisfied knowledge of deep learning and neural networks. Student is able to choose suitable deep learning tehnique and apply the technical know-how in practise. Student undestands the mathematic behind the technigues in satisfying level. Additionally, the student is able to estimate and validate implementation superficially.
Assessment criteria, good (3)
Good 3: Student has good knowledge of deep learning and neural networks. Student is able to choose appropriate deep learning tehnique and apply the technical know-how in practise. Student undestands well the mathematic behind the technigues in good level. Additionally, the student is able to estimate and validate implementation well.
Very good 4: Student has very good knowledge of deep learning and neural networks. Student is able to choose and justify versatilely deep learning tehnique and apply the technical know-how in practise. Student undestands the mathematic behind the technigues in very good level. Additionally, the student is able to estimate and validate implementation critically.
Assessment criteria, excellent (5)
Excellent 5: Student has excellent knowledge of deep learning and neural networks. Student is able to choose and justify deep learning tehnique and apply the technical know-how in practise. Student undestands the mathematic behind the technigues in excellent level. Additionally, the student is able to estimate and validate implementation critically.
Enrollment
01.08.2024 - 31.08.2024
Timing
26.08.2024 - 18.12.2024
Number of ECTS credits allocated
5 op
Mode of delivery
Face-to-face
Unit
School of Technology
Teaching languages
- English
Seats
0 - 35
Degree programmes
- Master's Degree Programme in Artificial Intelligence and Data Analytics
Teachers
- Mika Rantonen
Groups
-
YTI23S1Master's Degree Programme in Artificial Intelligence and Data-analytics
Objectives
The student understands the significance of deep learning in the digitalizing operational environment and knows the type and structure of neural network.
The student knows about the most common methods of deep learning and how to desing and apply them in practice to the data and interpret the results of the methods. In addition, the student undestands the mathematic behind the neural networks.
Course competences:
EUYIV EUR-ACE: Investigations, Master's Degree
EUYER EUR-ACE: Engineering Practice, Master's Degree
EUYMJ EUR-ACE: Making Judgements, Master's Degree
Content
- Structure of neural network vs artificial neural network
- Neural network Architecture
- Different types of neural networks and their applications: CNN, RNN, LSTM, autocorrelation, autoencoder (CAN) etc.
- Mathematic behind the neural network
- Feature engineering
- Training process of neural network
- Loss, Loss functions and Metrics
- Undefitting and Overfitting
- Estimate and interpret the results
- Regularization
- Hyperparameter tuning
- Transfer and Active Learning
Time and location
The course starts on Friday 6.9.2024 at Teams
Mandatory contact days:
Friday 15.11.2024 15.00-20.00
Saturday 16.11.2026 9.00-15.00
Teams Meeting is not available.
Evaluation scale
0-5
Evaluation criteria, satisfactory (1-2)
Sufficient 1: Student has sufficient knowledge of deep learning and neural networks. Student is able to apply the most common techniques of deep learning and has the sufficient knowledge of mathematic behind the technigues. Additionally, the student is able to estimate and validate implementation briefly.
Satisfactory 2: Student has satisfied knowledge of deep learning and neural networks. Student is able to choose suitable deep learning tehnique and apply the technical know-how in practise. Student undestands the mathematic behind the technigues in satisfying level. Additionally, the student is able to estimate and validate implementation superficially.
Evaluation criteria, good (3-4)
Good 3: Student has good knowledge of deep learning and neural networks. Student is able to choose appropriate deep learning tehnique and apply the technical know-how in practise. Student undestands well the mathematic behind the technigues in good level. Additionally, the student is able to estimate and validate implementation well.
Very good 4: Student has very good knowledge of deep learning and neural networks. Student is able to choose and justify versatilely deep learning tehnique and apply the technical know-how in practise. Student undestands the mathematic behind the technigues in very good level. Additionally, the student is able to estimate and validate implementation critically.
Evaluation criteria, excellent (5)
Excellent 5: Student has excellent knowledge of deep learning and neural networks. Student is able to choose and justify deep learning tehnique and apply the technical know-how in practise. Student undestands the mathematic behind the technigues in excellent level. Additionally, the student is able to estimate and validate implementation critically.
Enrollment
01.08.2023 - 08.09.2023
Timing
28.08.2023 - 19.12.2023
Number of ECTS credits allocated
5 op
Mode of delivery
Face-to-face
Unit
School of Technology
Campus
Lutakko Campus
Teaching languages
- English
Seats
20 - 35
Degree programmes
- Master's Degree Programme in Artificial Intelligence and Data Analytics
Teachers
- Mika Rantonen
Groups
-
YTI22S1Master's Degree Programme in Artificial Intelligence and Data-analytics
Objectives
The student understands the significance of deep learning in the digitalizing operational environment and knows the type and structure of neural network.
The student knows about the most common methods of deep learning and how to desing and apply them in practice to the data and interpret the results of the methods. In addition, the student undestands the mathematic behind the neural networks.
Course competences:
EUYIV EUR-ACE: Investigations, Master's Degree
EUYER EUR-ACE: Engineering Practice, Master's Degree
EUYMJ EUR-ACE: Making Judgements, Master's Degree
Content
- Structure of neural network vs artificial neural network
- Neural network Architecture
- Different types of neural networks and their applications: CNN, RNN, LSTM, autocorrelation, autoencoder (CAN) etc.
- Mathematic behind the neural network
- Feature engineering
- Training process of neural network
- Loss, Loss functions and Metrics
- Undefitting and Overfitting
- Estimate and interpret the results
- Regularization
- Hyperparameter tuning
- Transfer and Active Learning
Time and location
Mandatory contacts days:
Friday 8.9.2023 15.00-20.00
Saturday 11.11.2023 9.00-15.00
Teams Meeting is not available.
Evaluation scale
0-5
Evaluation criteria, satisfactory (1-2)
Sufficient 1: Student has sufficient knowledge of deep learning and neural networks. Student is able to apply the most common techniques of deep learning and has the sufficient knowledge of mathematic behind the technigues. Additionally, the student is able to estimate and validate implementation briefly.
Satisfactory 2: Student has satisfied knowledge of deep learning and neural networks. Student is able to choose suitable deep learning tehnique and apply the technical know-how in practise. Student undestands the mathematic behind the technigues in satisfying level. Additionally, the student is able to estimate and validate implementation superficially.
Evaluation criteria, good (3-4)
Good 3: Student has good knowledge of deep learning and neural networks. Student is able to choose appropriate deep learning tehnique and apply the technical know-how in practise. Student undestands well the mathematic behind the technigues in good level. Additionally, the student is able to estimate and validate implementation well.
Very good 4: Student has very good knowledge of deep learning and neural networks. Student is able to choose and justify versatilely deep learning tehnique and apply the technical know-how in practise. Student undestands the mathematic behind the technigues in very good level. Additionally, the student is able to estimate and validate implementation critically.
Evaluation criteria, excellent (5)
Excellent 5: Student has excellent knowledge of deep learning and neural networks. Student is able to choose and justify deep learning tehnique and apply the technical know-how in practise. Student undestands the mathematic behind the technigues in excellent level. Additionally, the student is able to estimate and validate implementation critically.