Phys2 Energy (3 cr)
Code: TZLF2300-3049
General information
Enrollment
01.11.2022 - 05.01.2023
Timing
09.01.2023 - 30.04.2023
Number of ECTS credits allocated
3 op
Mode of delivery
Face-to-face
Unit
School of Technology
Campus
Main Campus
Teaching languages
- Finnish
Seats
0 - 65
Degree programmes
- Bachelor's Degree Programme in Electrical and Automation Engineering
Teachers
- Ville Kotimäki
Teacher in charge
Ville Kotimäki
Groups
-
ZJATSA22S1Avoin amk, Sähkö- ja automaatiotekniikka, Päivä
-
TSA22SR1Sähkö- ja automaatiotekniikka (AMK)
Objectives
Purpose:
During the course, you will learn the physic laws of conservation and the basics of oscillation. In addition, you will learn about physical measurements and the basics of error analysis. After the course, you will be able to apply this information to mathematics as a help in the study modules that you will later study in the degree program.
EUR-ACE Competences:
Knowledge and understanding
Learning outcomes:
After completing this course, you will know the basic principles of work and energy in both linear motion and rotational motion.You will understand the laws of oscillation and, with your knowledge, understand the basic legalities and problems dealing with oscillation in your own profession.
Content
Linear momentum and impulse, elastic and inelastic collisions, angular momentum, conservation of mechanical energy, mechanical work, power and efficiency, kinetic energy, gravitational potential energy, elastic potential energy, simple harmonic motion, damped oscillation
Learning materials and recommended literature
Kurssilla käytetään opettajan tekemiä videoita sekä pdf-muotoista materiaaleja.
Seuraavat kirjat sisältävät kurssilla käsiteltäviä aiheita:
1.) Young, Hugh D.; Freedman, Roger A. University Physics with Modern Physics. International edition.
2.) Knight, Randal D. Physics for Scientists and Engineers. Pearson International edition.
3.) Suvanto, K. Tekniikan Fysiikka 1. Edita.
4.) Suvanto, K. Tekniikan Fysiikka 2. Edita.
Mitkä tahansa painokset kelpaavat.
Teaching methods
Kurssi koostuu perinteisestä luento-opetuksesta, opetusvideoiden katselusta, laskuharjoitusten laskemisesta sekä laboratoriotyöstä. Luennoista tulee tallenteet.
Exam dates and retake possibilities
Kurssin koeaikataulut ilmoitetaan ensimmäisellä luennolla.
Student workload
32 h kontaktiopetusta
5 h loppukoe
44 h itsenäistä opiskelua
Further information for students
Kurssi arvioidaan kaksiosaisen loppukokeen ja laboratoriotyön perusteella.
Evaluation scale
0-5
Evaluation criteria, satisfactory (1-2)
Sufficient 1
You are able to recognize phenomena and the models attached to the field of the course.
You can solve simple course related problems. You can read different kinds of tables and graphs to get the right information. Your calculations may have some mistakes.
Satisfactory 2
You are able to understand phenomena and the models attached to the field of the course.
You can solve basic problems with the help of examples. You can read different kinds of tables and graphs to get the right information. Your calculations may have some mistakes.
Evaluation criteria, good (3-4)
Good 3
You are able to understand phenomena and the models attached to the field of the course.
You can solve basic problems. You can read different kinds of tables and graphs and you are also able to produce them yourself. Your calculations may have some mistakes.
Very good 4
You are able to understand phenomena and the models attached to the field of the course.
You can solve challenging problems. You can read different kinds of tables and graphs and you are able to produce them yourself. You are also able to evaluate the assumptions and applicabilities of the models you are using. Your calculations are mainly right.
Evaluation criteria, excellent (5)
Excellent 5
You are able to understand phenomena and the models attached to the field of the course.
You can solve challenging problems. You can read different kinds of tables and graphs and you are able to make make them yourself. You are also able to evaluate the assumptions and applicabilities of the models you are using. You can apply your knowledge to new situations. Your calculations are right but may have some careless errors.
Prerequisites
The course completion requires abilities to use basic functions and solve groups of equations. The ability to use coordinate systems is needed for solving motion and force related problems.