Applied mathematics: Optimization and Network Models (3 cr)
Code: TZLM7030-3002
General information
- Enrollment
-
01.11.2021 - 09.01.2022
Registration for the implementation has ended.
- Timing
-
10.01.2022 - 25.02.2022
Implementation has ended.
- Number of ECTS credits allocated
- 3 cr
- Local portion
- 1 cr
- Virtual portion
- 2 cr
- Mode of delivery
- Blended learning
- Unit
- School of Technology
- Campus
- Lutakko Campus
- Teaching languages
- Finnish
- Seats
- 0 - 35
- Degree programmes
- Bachelor's Degree Programme in Information and Communications Technology
- Teachers
- Harri Varpanen
- Groups
-
TTV20S5Tieto- ja viestintätekniikka
-
TTV20S3Tieto- ja viestintätekniikka
-
TTV20S2Tieto- ja viestintätekniikka
-
TTV20S1Tieto- ja viestintätekniikka
- Course
- TZLM7030
Evaluation scale
Pass/Fail
Objective
Course objective
Network models and optimization is one of the alternatives for the applied mathematics courses of information and communication technology. In this course, you will focus your knowledge in systems sciences, i.e. operations research. You will learn about network optimization models that are actively used, e.g. in logistics and urban planning. You will also learn how to solve optimization problems programmatically using both network algorithms and more general linear algorithms.
Competences
EUR-ACE Knowledge and Understanding
- knowledge and understanding of natural scientific and mathematical principles in ICT
- knowledge and understanding of the own specialization field in engineering sciences at a level that enables achieving the other program outcomes including an understanding of requirements in your own field.
EUR-ACE Engineering Practice
- knowledge about the linear techniques and their limitations
Learning outcomes
You know the basic concepts related to networks. You know how to process networks programmatically and how to run optimization algorithms for networks. You understand how the elementary network algorithms work. You are able to formulate a linear optimization problem programmatically and find a solution for it. You understand the general principle of optimization and have familiarized yourself with some non-linear optimization problems.
Content
Directed and undirected graph. Graph coloring, scheduling problems. Minimal spanning tree, shortest path. Flow networks with applications. Linear optimization. Examples of non-linear optimization. Selected algorithms.
Materials
Opettaja antaa materiaalit opintojakson alussa / aikana.
Teaching methods
Luennot ja ohjaukset alkuviikosta luokassa, loppuviikosta Zoomissa (samat asiat kuin alkuviikosta, tallennetaan).
Viikoittaiset tehtävät, palautetaan kirjallisesti.
Lopputesti.
Läpäisykriteerit: kaikki tehtävät hyväksytysti palautettu, lopputesti läpäisty.
Python-koodia ja student-palvelinta käytetään havainnollistamaan algoritmeja. Aiempaa python-kokemusta ei tarvita.
Student workload
Ohjaukset 30h, itsenäinen työskentely 51h.
Assessment criteria, approved/failed
You know the basic concepts related to networks. You know how to process networks programmatically and how to run optimization algorithms for networks. You understand how the elementary network algorithms work. You are able to formulate a linear optimization problem programmatically and find a solution for it. You understand the general principle of optimization and have familiarized yourself with some non-linear optimization problems.
Qualifications
Ohjelmoinnin perusosaaminen