Skip to main content

Differential equations in construction engineering (3 cr)

Code: TZLM4350-3004

General information


Enrollment
27.04.2023 - 31.05.2023
Registration for the implementation has ended.
Timing
01.05.2023 - 31.08.2023
Implementation has ended.
Number of ECTS credits allocated
3 cr
Local portion
0 cr
Virtual portion
3 cr
Mode of delivery
Online learning
Unit
School of Technology
Campus
Main Campus
Teaching languages
Finnish
Seats
0 - 10
Degree programmes
Bachelor's Degree Programme in Construction and Civil Engineering
Teachers
Antti Kosonen
Groups
TRY21S1
Rakennus- ja yhdyskuntatekniikka (AMK)
Course
TZLM4350
No reservations found for realization TZLM4350-3004!

Evaluation scale

0-5

Content scheduling

The student can complete the course at their own pace during the summer of 2023.

Objective

Purpose
After the course you will understand how differential equations are used in civil engineering to calculate deflections in beams.

Competencies
Knowledge and understanding of the differential equations at a level necessary to achieve the other programme outcomes.

Learning outcome
You know what differential equations are. You can solve a differential equation of first order using appropriate tools. You understand the role of initial and boundary conditions. You can solve problems related to construction technology.

Content

Using local extremas in calculating deflections in beams. Concept of differential equations and verifying the results and initial and boundary conditions. Solving a differential equation by integrating. Defining the equation for a load and defining the initial and boundary conditions according to the underpinning. Calculating the shear force, the bending moment, the deflection angle and the deflection and determining and analyzing their graphs.

Materials

Learning material written by course teacher and video recordings.

Some good books about the topic that are available at JAMK library in English:
- Beer, F. P. k., Johnston, E. R., DeWolf, J. T. & Mazurek, D. F. 2015. Mechanics of materials. Seventh edition in SI units. New York: McGraw-Hill Education.
- Bedford, A. & Liechti, K. M. 2020. Mechanics of materials. Second Edition. Cham: Springer International Publishing.

Teaching methods

E-learning: Independent study.

Employer connections

-

Exam schedules

Final exam at Rajakatu campus /online August 23
1st resit September 11 at campus / online
2nd resit October 2 at campus / online

International connections

-

Completion alternatives

Lähitoteutus syksyllä 2023.

Student workload

3op * 27 h/op = 81 h of independent study

Assessment criteria, satisfactory (1)

1: You know the concept of differential equation. You understand how to use differential equations in calculating the deflections in a beam. You can verify the result and the initial and boundary conditions. You can solve the deflection of a beam by a model.

2: You have achieved the desired goals (see the criteria in grade 1). You can solve the deflection of a beam without a model, but your reasoning is sometimes deficient or you make mistakes in calculations.

Assessment criteria, good (3)

3: You have achieved the desired goals (see the criteria in grade 1). You know most of the concepts and methods and how to apply them in familiar situations showing often the ability to reason completely and calculate flawlessly.

4: You have achieved the desired goals (see the criteria in grade 1). You know most of the concepts and methods and how to apply them in new situations showing in most cases the ability to reason completely and calculate flawlessly.

Assessment criteria, excellent (5)

5: You have achieved the desired goals (see the criteria in grade 1). You know all the concepts and methods and how to apply them in new situations showing always the ability to combine things, reason completely and calculate flawlessly.

Qualifications

You understand concept of derivation and you can use derivatives in optimization. You understand concept of integrals. You can take the derivatives and integrals of functions by appropriate tools.

Further information

Assessment is based solely on the final exam.

Go back to top of page