Math3 Derivative and Integral (3 cr)
Code: TZLM3300-3081
General information
- Enrollment
-
20.11.2023 - 04.01.2024
Registration for the implementation has ended.
- Timing
-
04.03.2024 - 19.05.2024
Implementation has ended.
- Number of ECTS credits allocated
- 3 cr
- Local portion
- 3 cr
- Mode of delivery
- Face-to-face
- Unit
- School of Technology
- Campus
- Main Campus
- Teaching languages
- Finnish
- Degree programmes
- Bachelor's Degree Programme in Energy and Environmental Technology
- Bachelor's Degree Programme in Mechanical Engineering
- Bachelor's Degree Programme in Logistics
- Bachelor's Degree Programme in Construction and Civil Engineering
- Bachelor's Degree Programme in Electrical and Automation Engineering
- Bachelor's Degree Programme in Purchasing and Logistics Engineering
- Bachelor's Degree Programme in Information and Communications Technology
- Teachers
- Ida Arhosalo
- Groups
-
TSA23SR1Sähkö- ja automaatiotekniikka (AMK)
-
TSA23SR2Sähkö- ja automaatiotekniikka (AMK)
- Course
- TZLM3300
Realization has 22 reservations. Total duration of reservations is 37 h 45 min.
Time | Topic | Location |
---|---|---|
Mon 04.03.2024 time 11:30 - 12:45 (1 h 15 min) |
Mat3 Derivaatta ja integraali TZLM3300-3081 |
P2_D110
Auditorio
|
Thu 07.03.2024 time 09:00 - 10:30 (1 h 30 min) |
Mat3 Derivaatta ja integraali TZLM3300-3081 |
P2_D331
Tietoverkkolaboratorio
|
Thu 07.03.2024 time 11:30 - 13:00 (1 h 30 min) |
Mat3 Derivaatta ja integraali TZLM3300-3081 |
P2_D331
Tietoverkkolaboratorio
|
Mon 11.03.2024 time 11:30 - 12:45 (1 h 15 min) |
Mat3 Derivaatta ja integraali TZLM3300-3081 |
P2_D110
Auditorio
|
Thu 14.03.2024 time 09:00 - 10:30 (1 h 30 min) |
Mat3 Derivaatta ja integraali TZLM3300-3081 |
P2_D331
Tietoverkkolaboratorio
|
Thu 14.03.2024 time 11:30 - 13:00 (1 h 30 min) |
Mat3 Derivaatta ja integraali TZLM3300-3081 |
P2_D331
Tietoverkkolaboratorio
|
Mon 18.03.2024 time 11:30 - 12:45 (1 h 15 min) |
Mat3 Derivaatta ja integraali TZLM3300-3081 |
R35F306
Oppimistila
|
Thu 21.03.2024 time 09:00 - 10:30 (1 h 30 min) |
Mat3 Derivaatta ja integraali TZLM3300-3081 |
P2_D331
Tietoverkkolaboratorio
|
Thu 21.03.2024 time 11:30 - 13:00 (1 h 30 min) |
Mat3 Derivaatta ja integraali TZLM3300-3081 |
P2_D331
Tietoverkkolaboratorio
|
Mon 25.03.2024 time 11:30 - 12:45 (1 h 15 min) |
Mat3 Derivaatta ja integraali TZLM3300-3081 |
P2_D110
Auditorio
|
Thu 28.03.2024 time 09:00 - 10:30 (1 h 30 min) |
Mat3 Derivaatta ja integraali TZLM3300-3081 |
P2_D331
Tietoverkkolaboratorio
|
Thu 28.03.2024 time 11:30 - 13:00 (1 h 30 min) |
Mat3 Derivaatta ja integraali TZLM3300-3081 |
P2_D331
Tietoverkkolaboratorio
|
Wed 03.04.2024 time 13:00 - 14:30 (1 h 30 min) |
Mat3 Derivaatta ja integraali TZLM3300-3081 |
P2_D110
Auditorio
|
Thu 04.04.2024 time 09:00 - 10:30 (1 h 30 min) |
Mat3 Derivaatta ja integraali TZLM3300-3081 |
P2_D331
Tietoverkkolaboratorio
|
Thu 04.04.2024 time 11:30 - 13:00 (1 h 30 min) |
Mat3 Derivaatta ja integraali TZLM3300-3081 |
P2_D331
Tietoverkkolaboratorio
|
Mon 08.04.2024 time 11:30 - 12:45 (1 h 15 min) |
Mat3 Derivaatta ja integraali TZLM3300-3081 |
P2_D110
Auditorio
|
Thu 11.04.2024 time 09:00 - 10:30 (1 h 30 min) |
Mat3 Derivaatta ja integraali TZLM3300-3081 |
P2_D331
Tietoverkkolaboratorio
|
Thu 11.04.2024 time 11:30 - 13:00 (1 h 30 min) |
Mat3 Derivaatta ja integraali TZLM3300-3081 |
P2_D331
Tietoverkkolaboratorio
|
Tue 16.04.2024 time 11:30 - 14:30 (3 h 0 min) |
Mat3 Derivaatta ja integraali TZLM3300-3081 - Koe |
P2_D331
Tietoverkkolaboratorio
|
Wed 17.04.2024 time 11:30 - 14:30 (3 h 0 min) |
Mat3 Derivaatta ja integraali TZLM3300-3081 - Koe |
P2_D331
Tietoverkkolaboratorio
|
Tue 30.04.2024 time 11:30 - 14:30 (3 h 0 min) |
Mat3 Derivaatta ja integraali TZLM3300-3081 - Uusintakoe |
P2_D331
Tietoverkkolaboratorio
|
Tue 14.05.2024 time 11:30 - 14:30 (3 h 0 min) |
Mat3 Derivaatta ja integraali TZLM3300-3081 - Uusintakoe |
R35F307
Oppimistila
|
Evaluation scale
0-5
Objective
The object of the course
During this course you will learn the concepts needed to study continuous change and dynamic phenomena. With differential calculus you can study instantaneous rates of change and the slopes of curves. With integral calculus you can study accumulation of quantities and areas bounded by curves. During this course you learn how to use these concepts in applications.
Course competences
EUR-ACE: Knowledge and understanding
You have the knowledge and understanding of mathematics and other basic sciences underlying your engineering specialisation, at a level necessary to achieve the other programme learning outcomes.
The learning objectives of the course
After completing this course you know the meaning of derivative and integral as tools for modeling dynamic phenomena. You know how to differentiate and integrate. You know how to use the derivative and integral in applications.
Content
In this course, you will learn to master the tools needed to study phenomena of change, such as the concepts of derivatives and integrals. You will understand the meaning of these concepts and be able to apply them in practice. You will learn to derive and integrate and solve applied problems using these methods. This course will give you a strong foundation in applying mathematical methods to engineering problems.
The derivative and its different interpretations. Rules of differentiation. Using differentiation in optimization problems and other applications involving the derivative such as estimation of error. The definite integral. Rules of integration. The applications of the integral. Using technology in calculations.
Assessment criteria, satisfactory (1)
Sufficient 1
You know the concept of the derivative as the rate of change and as the slope of the tangent. Yo understand how to apply the derivative in optimization problems. You can differentiate and integrate polynomials without technology. You know the concept of the integral as accumulation of quantities and as area under a curve. You know the relation between integral and derivative.
Satisfactory 2
You have achieved the desired goals (look at the criteria of grade 1). You know many of the concepts and methods and how to apply them in familiar situations but your reasoning is sometimes deficient or you make mistakes in calculations.
Assessment criteria, good (3)
Good 3
You have achieved the desired goals(look at the criteria of grade 1). You know most of the concepts and methods and how to apply them in familiar situations showing often the ability to reason completely and calculate flawlessly
Very good 4
You have achieved the desired goals (look at the criteria of grade 1). You know most of the concepts and methods and how to apply them in new situations showing in most cases the ability to reason completely and calculate flawlessly.
Assessment criteria, excellent (5)
You have achieved the desired goals (look at the criteria of grade 1). You know all the concepts and methods and how to apply them in new situations showing always the ability to combine things, reason completely and calculate flawlessly.
Qualifications
You know the concept of a limit value. You can work with polynomial, exponential, logarithmic and trigonometric functions.