Applied mathematics: Optimization and Network Models (3 cr)
Code: TZLM7030-3010
General information
- Enrollment
-
01.08.2024 - 22.08.2024
Registration for the implementation has ended.
- Timing
-
21.10.2024 - 18.12.2024
Implementation has ended.
- Number of ECTS credits allocated
- 3 cr
- Local portion
- 3 cr
- Mode of delivery
- Face-to-face
- Unit
- School of Technology
- Campus
- Lutakko Campus
- Teaching languages
- Finnish
- Seats
- 0 - 35
- Degree programmes
- Bachelor's Degree Programme in Information and Communications Technology
- Teachers
- Harri Varpanen
- Groups
-
TTV23S2Tieto- ja viestintätekniikka (AMK)
-
TTV23S3Tieto- ja viestintätekniikka (AMK)
-
TTV23S5Tieto- ja viestintätekniikka (AMK)
-
TTV23SMTieto- ja viestintätekniikka (AMK)
-
TTV23S1Tieto- ja viestintätekniikka (AMK)
- Course
- TZLM7030
Realization has 13 reservations. Total duration of reservations is 24 h 45 min.
Time | Topic | Location |
---|---|---|
Mon 21.10.2024 time 13:30 - 15:45 (2 h 15 min) |
Sovellettu matematiikka: Optimointi ja verkkomallit TZLM7030-3010 |
P2_D431
Elektroniikkalaboratorio
|
Wed 23.10.2024 time 12:00 - 13:30 (1 h 30 min) |
Sovellettu matematiikka: Optimointi ja verkkomallit TZLM7030-3010 |
P2_D327
CISCO-laboratorio
|
Mon 28.10.2024 time 13:30 - 15:45 (2 h 15 min) |
Sovellettu matematiikka: Optimointi ja verkkomallit TZLM7030-3010 |
P2_D431
Elektroniikkalaboratorio
|
Wed 30.10.2024 time 12:00 - 13:30 (1 h 30 min) |
Sovellettu matematiikka: Optimointi ja verkkomallit TZLM7030-3010 |
P2_D327
CISCO-laboratorio
|
Mon 04.11.2024 time 13:30 - 15:45 (2 h 15 min) |
Sovellettu matematiikka: Optimointi ja verkkomallit TZLM7030-3010 |
Verkko/Online (KYHA)
|
Wed 06.11.2024 time 12:00 - 13:30 (1 h 30 min) |
Sovellettu matematiikka: Optimointi ja verkkomallit TZLM7030-3010 |
Verkko/Online (KYHA)
|
Mon 11.11.2024 time 13:30 - 15:45 (2 h 15 min) |
Sovellettu matematiikka: Optimointi ja verkkomallit TZLM7030-3010 |
P2_D431
Elektroniikkalaboratorio
|
Wed 13.11.2024 time 12:00 - 13:30 (1 h 30 min) |
Sovellettu matematiikka: Optimointi ja verkkomallit TZLM7030-3010 |
P2_D327
CISCO-laboratorio
|
Mon 18.11.2024 time 13:30 - 15:45 (2 h 15 min) |
Sovellettu matematiikka: Optimointi ja verkkomallit TZLM7030-3010 |
P2_D431
Elektroniikkalaboratorio
|
Wed 20.11.2024 time 12:00 - 13:30 (1 h 30 min) |
Sovellettu matematiikka: Optimointi ja verkkomallit TZLM7030-3010 |
P2_D327
CISCO-laboratorio
|
Mon 25.11.2024 time 13:30 - 15:45 (2 h 15 min) |
Sovellettu matematiikka: Optimointi ja verkkomallit TZLM7030-3010 |
P2_D431
Elektroniikkalaboratorio
|
Wed 27.11.2024 time 12:00 - 13:30 (1 h 30 min) |
Sovellettu matematiikka: Optimointi ja verkkomallit TZLM7030-3010 |
P2_D327
CISCO-laboratorio
|
Mon 02.12.2024 time 13:30 - 15:45 (2 h 15 min) |
Sovellettu matematiikka: Optimointi ja verkkomallit TZLM7030-3010 |
P2_D431
Elektroniikkalaboratorio
|
Evaluation scale
0-5
Content scheduling
Six weeks:
1. Basics & course orientation
2. Network traversals, minimal spanning trees
3. Shortest paths
4. Scheduling via graph coloring
5. Min cost flow
6. More min cost flow.
Objective
Course objective
Network models and optimization is one of the alternatives for the applied mathematics courses of information and communication technology. In this course, you will focus your knowledge in systems sciences, i.e. operations research. You will learn about network optimization models that are actively used, e.g. in logistics and urban planning. You will also learn how to solve optimization problems programmatically using both network algorithms and more general linear algorithms.
Competences
EUR-ACE Knowledge and Understanding
- knowledge and understanding of natural scientific and mathematical principles in ICT
- knowledge and understanding of the own specialization field in engineering sciences at a level that enables achieving the other program outcomes including an understanding of requirements in your own field.
EUR-ACE Engineering Practice
- knowledge about the linear techniques and their limitations
Learning outcomes
You know the basic concepts related to networks. You know how to process networks programmatically and how to run optimization algorithms for networks. You understand how the elementary network algorithms work. You are able to formulate a linear optimization problem programmatically and find a solution for it. You understand the general principle of optimization and have familiarized yourself with some non-linear optimization problems.
Content
Directed and undirected graph. Graph coloring, scheduling problems. Minimal spanning tree, shortest path. Flow networks with applications. Linear optimization. Examples of non-linear optimization. Selected algorithms.
Location and time
Teaching in Dynamo (with Teams broadcast & recording).
Materials
Ahuja, Magnanti, Orlin. Network Flows. Theory, Algorithms, and Applications. Prentice-Hall 1993.
See also:
https://coral.ise.lehigh.edu/~ted/teaching/ie411/
https://towardsdatascience.com/graph-theory-and-deep-learning-know-hows-6556b0e9891b
Teaching methods
Weekly lectures and exercise sessions.
The course is completed by doing the weekly exercises (mostly python) and by peer-reviewing exercises done by the other students. Completing all the exercises is mandatory in order to pass the course. In addition, there is a final exam in the Exam system.
We use the networkx python library. A working python environment is installed on the student.labranet.jamk.fi server, and one can use just an SSH connection in order to do all the work.
Assessment criteria, approved/failed
You know the basic concepts related to networks. You know how to process networks programmatically and how to run optimization algorithms for networks. You understand how the elementary network algorithms work. You are able to formulate a linear optimization problem programmatically and find a solution for it. You understand the general principle of optimization and have familiarized yourself with some non-linear optimization problems.
Qualifications
Ohjelmoinnin perusosaaminen
Further information
No previous python experience is required, but the general process of editing and running computer code should be familiar from before.
More specific course conventions will be negotiated during the first week of the course.