Skip to main content

Applied mathematics: Optimization and Network Models (3 cr)

Code: TZLM7030-3011

General information


Enrollment
18.11.2024 - 09.01.2025
Registration for the implementation has ended.
Timing
13.01.2025 - 07.03.2025
Implementation has ended.
Number of ECTS credits allocated
3 cr
Local portion
3 cr
Mode of delivery
Face-to-face
Unit
School of Technology
Campus
Lutakko Campus
Teaching languages
English
Seats
0 - 35
Degree programmes
Bachelor's Degree Programme in Information and Communications Technology
Teachers
Harri Varpanen
Groups
TTV23S2
Tieto- ja viestintätekniikka (AMK)
TTV23S3
Tieto- ja viestintätekniikka (AMK)
TTV23S5
Tieto- ja viestintätekniikka (AMK)
TTV23SM
Tieto- ja viestintätekniikka (AMK)
TTV23S1
Tieto- ja viestintätekniikka (AMK)
Course
TZLM7030

Realization has 18 reservations. Total duration of reservations is 18 h 45 min.

Time Topic Location
Mon 13.01.2025 time 09:45 - 10:30
(0 h 45 min)
Sovellettu matematiikka: Optimointi ja verkkomallit TZLM7030-3011
P2_D331 Tietoverkkolaboratorio
Mon 13.01.2025 time 11:15 - 12:00
(0 h 45 min)
Sovellettu matematiikka: Optimointi ja verkkomallit TZLM7030-3011
P2_D331 Tietoverkkolaboratorio
Wed 15.01.2025 time 11:30 - 13:00
(1 h 30 min)
Sovellettu matematiikka: Optimointi ja verkkomallit TZLM7030-3011
P2_D421 Mikroluokka
Mon 20.01.2025 time 09:45 - 10:30
(0 h 45 min)
Sovellettu matematiikka: Optimointi ja verkkomallit TZLM7030-3011
P2_D331 Tietoverkkolaboratorio
Mon 20.01.2025 time 11:15 - 12:00
(0 h 45 min)
Sovellettu matematiikka: Optimointi ja verkkomallit TZLM7030-3011
P2_D331 Tietoverkkolaboratorio
Wed 22.01.2025 time 11:30 - 13:00
(1 h 30 min)
Sovellettu matematiikka: Optimointi ja verkkomallit TZLM7030-3011
P2_D421 Mikroluokka
Mon 27.01.2025 time 09:45 - 10:30
(0 h 45 min)
Sovellettu matematiikka: Optimointi ja verkkomallit TZLM7030-3011
P2_D331 Tietoverkkolaboratorio
Mon 27.01.2025 time 11:15 - 12:00
(0 h 45 min)
Sovellettu matematiikka: Optimointi ja verkkomallit TZLM7030-3011
P2_D331 Tietoverkkolaboratorio
Wed 29.01.2025 time 11:30 - 13:00
(1 h 30 min)
Sovellettu matematiikka: Optimointi ja verkkomallit TZLM7030-3011
P2_D421 Mikroluokka
Mon 03.02.2025 time 09:45 - 10:30
(0 h 45 min)
Sovellettu matematiikka: Optimointi ja verkkomallit TZLM7030-3011
Verkko/Online (KYHA)
Wed 05.02.2025 time 11:30 - 13:00
(1 h 30 min)
Sovellettu matematiikka: Optimointi ja verkkomallit TZLM7030-3011
Verkko/Online (KYHA)
Mon 10.02.2025 time 09:45 - 10:30
(0 h 45 min)
Sovellettu matematiikka: Optimointi ja verkkomallit TZLM7030-3011
P2_D331 Tietoverkkolaboratorio
Mon 10.02.2025 time 11:15 - 12:00
(0 h 45 min)
Sovellettu matematiikka: Optimointi ja verkkomallit TZLM7030-3011
P2_D331 Tietoverkkolaboratorio
Wed 12.02.2025 time 11:30 - 13:00
(1 h 30 min)
Sovellettu matematiikka: Optimointi ja verkkomallit TZLM7030-3011
P2_D421 Mikroluokka
Mon 17.02.2025 time 09:45 - 10:30
(0 h 45 min)
Sovellettu matematiikka: Optimointi ja verkkomallit TZLM7030-3011
P2_D331 Tietoverkkolaboratorio
Mon 17.02.2025 time 11:15 - 12:00
(0 h 45 min)
Sovellettu matematiikka: Optimointi ja verkkomallit TZLM7030-3011
P2_D331 Tietoverkkolaboratorio
Wed 19.02.2025 time 11:30 - 13:00
(1 h 30 min)
Sovellettu matematiikka: Optimointi ja verkkomallit TZLM7030-3011
P2_D421 Mikroluokka
Wed 05.03.2025 time 11:30 - 13:00
(1 h 30 min)
Sovellettu matematiikka: Optimointi ja verkkomallit TZLM7030-3011
P2_D421 Mikroluokka
Changes to reservations may be possible.

Evaluation scale

0-5

Content scheduling

Six weeks:

1. Basics & course orientation
2. Network traversals, minimal spanning trees
3. Shortest paths
4. Scheduling via graph coloring
5. Min cost flow
6. More min cost flow.

Objective

Course objective

Network models and optimization is one of the alternatives for the applied mathematics courses of information and communication technology. In this course, you will focus your knowledge in systems sciences, i.e. operations research. You will learn about network optimization models that are actively used, e.g. in logistics and urban planning. You will also learn how to solve optimization problems programmatically using both network algorithms and more general linear algorithms.

Competences

EUR-ACE Knowledge and Understanding
- knowledge and understanding of natural scientific and mathematical principles in ICT
- knowledge and understanding of the own specialization field in engineering sciences at a level that enables achieving the other program outcomes including an understanding of requirements in your own field.

EUR-ACE Engineering Practice
- knowledge about the linear techniques and their limitations

Learning outcomes

You know the basic concepts related to networks. You know how to process networks programmatically and how to run optimization algorithms for networks. You understand how the elementary network algorithms work. You are able to formulate a linear optimization problem programmatically and find a solution for it. You understand the general principle of optimization and have familiarized yourself with some non-linear optimization problems.

Content

Directed and undirected graph. Graph coloring, scheduling problems. Minimal spanning tree, shortest path. Flow networks with applications. Linear optimization. Examples of non-linear optimization. Selected algorithms.

Location and time

Teaching in Dynamo (with Teams broadcast & recording), Jan-Feb 2025

Materials

Ahuja, Magnanti, Orlin. Network Flows. Theory, Algorithms, and Applications. Prentice-Hall 1993.

See also:
https://coral.ise.lehigh.edu/~ted/teaching/ie411/
https://towardsdatascience.com/graph-theory-and-deep-learning-know-hows-6556b0e9891b

Teaching methods

Weekly lectures and exercise sessions.

The course is completed by doing the weekly exercises (mostly python) and by peer-reviewing exercises done by the other students. Completing all the exercises is mandatory in order to pass the course.

We use the networkx python library. A working python environment is installed on the student.labranet.jamk.fi server, and one can use just an SSH connection in order to do all the work.

Assessment criteria, approved/failed

You know the basic concepts related to networks. You know how to process networks programmatically and how to run optimization algorithms for networks. You understand how the elementary network algorithms work. You are able to formulate a linear optimization problem programmatically and find a solution for it. You understand the general principle of optimization and have familiarized yourself with some non-linear optimization problems.

Qualifications

Ohjelmoinnin perusosaaminen

Further information

No previous python experience is required, but the general process of editing and running computer code should be familiar from before.

More specific course conventions will be negotiated during the first week of the course.

Go back to top of page