Game Engine Programming (5 cr)
Code: TTC8840-3005
General information
- Enrollment
-
01.08.2024 - 22.08.2024
Registration for the implementation has ended.
- Timing
-
26.08.2024 - 18.12.2024
Implementation has ended.
- Number of ECTS credits allocated
- 5 cr
- Local portion
- 0 cr
- Virtual portion
- 5 cr
- Mode of delivery
- Online learning
- Unit
- School of Technology
- Teaching languages
- English
- Seats
- 0 - 35
- Degree programmes
- Bachelor's Degree Programme in Information and Communications Technology
- Bachelor's Degree Programme in Information and Communications Technology
- Teachers
- Jani Immonen
- Groups
-
TTV22S5Tieto- ja viestintätekniikka (AMK)
-
TTV22S2Tieto- ja viestintätekniikka (AMK)
-
TTV22S3Tieto- ja viestintätekniikka (AMK)
-
TIC22S1Bachelor's Degree Programme in Information and Communications Technology
-
TTV22S1Tieto- ja viestintätekniikka (AMK)
-
TTV22S4Tieto- ja viestintätekniikka (AMK)
- Course
- TTC8840
Realization has 16 reservations. Total duration of reservations is 40 h 0 min.
Time | Topic | Location |
---|---|---|
Wed 28.08.2024 time 14:15 - 16:45 (2 h 30 min) |
Game Engine Programming TTC8840-3005 |
Online
|
Wed 04.09.2024 time 14:15 - 16:45 (2 h 30 min) |
Game Engine Programming TTC8840-3005 |
Online
|
Wed 11.09.2024 time 14:15 - 16:45 (2 h 30 min) |
Game Engine Programming TTC8840-3005 |
Online
|
Wed 18.09.2024 time 14:15 - 16:45 (2 h 30 min) |
Game Engine Programming TTC8840-3005 |
Online
|
Wed 25.09.2024 time 14:15 - 16:45 (2 h 30 min) |
Game Engine Programming TTC8840-3005 |
Online
|
Wed 02.10.2024 time 14:15 - 16:45 (2 h 30 min) |
Game Engine Programming TTC8840-3005 |
Online
|
Wed 09.10.2024 time 14:15 - 16:45 (2 h 30 min) |
Game Engine Programming TTC8840-3005 |
Online
|
Wed 23.10.2024 time 14:15 - 16:45 (2 h 30 min) |
Game Engine Programming TTC8840-3005 |
Online
|
Wed 30.10.2024 time 14:15 - 16:45 (2 h 30 min) |
Game Engine Programming TTC8840-3005 |
Online
|
Wed 06.11.2024 time 14:15 - 16:45 (2 h 30 min) |
Game Engine Programming TTC8840-3005 |
Online
|
Wed 13.11.2024 time 14:15 - 16:45 (2 h 30 min) |
Game Engine Programming TTC8840-3005 |
Online
|
Wed 20.11.2024 time 14:15 - 16:45 (2 h 30 min) |
Game Engine Programming TTC8840-3005 |
Online
|
Wed 27.11.2024 time 14:15 - 16:45 (2 h 30 min) |
Game Engine Programming TTC8840-3005 |
Online
|
Wed 04.12.2024 time 14:15 - 16:45 (2 h 30 min) |
Game Engine Programming TTC8840-3005 |
Online
|
Wed 11.12.2024 time 14:15 - 16:45 (2 h 30 min) |
Game Engine Programming TTC8840-3005 |
Online
|
Wed 18.12.2024 time 14:15 - 16:45 (2 h 30 min) |
Game Engine Programming TTC8840-3005 |
Online
|
Evaluation scale
0-5
Objective
Purpose:
In the Game Engine Programming course, you will learn about the fundamental concepts, architecture, design, and programming of a multi-platform game engine. You will create a game engine from scratch using industry-standard programming languages and tools, covering topics such as the game loop, graphics pipeline, input handling, physics simulation, audio playback, scripting, and asset management. You will also learn about game engine architectures, design patterns, and optimization techniques. The course will provide an overview of the game industry and emerging trends in game engine development.
EUR-ACE Competences:
Knowledge and Understanding
Engineering practice
Communication and team-working
Multidisciplinary competences
Engineering practice
Investigations and information retrieval
Learning outcomes:
Throughout the course, you will work on hands-on programming assignments, creating a fully functional game engine and games using the engine. By the end of the course, you will have a solid understanding of game engine development and the skills needed to create high-quality games for multiple platforms.
Content
The course will cover architecture, design and programming of Game Engine. The course covers topics such as:
- Design of game/real time graphics applications
- Basics of 3D Graphics
- Hierarchical systems
- Event systems
- Parallelism.
- Linear Algebra.
- Visibility checking and optimization.
- Collision checking and response.
- Other components like input and audio.
Materials
Materials in the e-learning environment.
Teaching methods
- lectures
- independent study
- distance learning
- small group learning
- exercises
- learning tasks
Exam schedules
The possible date and method of the exam will be announced in the course opening.
Completion alternatives
The admission procedures are described in the degree rule and the study guide. The teacher of the course will give you more information on possible specific course practices.
Student workload
One credit (1 Cr) corresponds to an average of 27 hours of work.
- lectures 50 h
- assignment 55 h
- independent study 30 h
Total 135 h
Assessment criteria, satisfactory (1)
Fail 0: The student does not meet the minimum criteria set for the course.
Sufficient (1): The student is familiar with the basic topics discussed during the course. The student
is able to write a working program with assistance and employ example code.
Satisfactory (2): The student understands the most basic topics discussed during the course,
however, he/she struggles to utilize this knowledge. The student is not able to search for relevant
information independently. The student is able to write programs, but uses mostly
existing example code.
Assessment criteria, good (3)
Good (3): The student understands the most important topics discussed during the course and is
able to utilize this knowledge in the most basic cases. The student is able to utilize information about
the discussed topics. The student is able to write simple programs utilizing topics discussed during the course.
Very good (4): The student understands the most important topics discussed during the course and
is able to utilize this knowledge in most common cases. The student is able to search and
understand information about the discussed topics. The student is able to write programs utilizing topics discussed during the course.
Assessment criteria, excellent (5)
Excellent (5): The student understands all topics discussed during the course and is able to use
them in an innovative manner even in complex and challenging situations. The student is able to search and
utilize information about the discussed topics independently. The student is fluent in writing programs
using topics covered in the course.
Qualifications
Basics in programming, Data structures and algorithms, Object-oriented Programming.
Further information
Grading is based on assignments.