Skip to main content

Future IoT Technologies (5 cr)

Code: TTC8850-3006

General information


Enrollment
18.11.2024 - 09.01.2025
Registration for the implementation has ended.
Timing
13.01.2025 - 30.04.2025
Implementation is running.
Number of ECTS credits allocated
5 cr
Local portion
5 cr
Mode of delivery
Face-to-face
Unit
School of Technology
Campus
Lutakko Campus
Teaching languages
English
Seats
0 - 35
Degree programmes
Bachelor's Degree Programme in Information and Communications Technology
Bachelor's Degree Programme in Information and Communications Technology
Teachers
Jouko Kotkansalo
Groups
TTV22S5
Tieto- ja viestintätekniikka (AMK)
TTV22S2
Tieto- ja viestintätekniikka (AMK)
TTV22S3
Tieto- ja viestintätekniikka (AMK)
TIC22S1
Bachelor's Degree Programme in Information and Communications Technology
TTV22S1
Tieto- ja viestintätekniikka (AMK)
TTV22S4
Tieto- ja viestintätekniikka (AMK)
Course
TTC8850

Realization has 15 reservations. Total duration of reservations is 37 h 30 min.

Time Topic Location
Wed 15.01.2025 time 08:30 - 11:00
(2 h 30 min)
Future IoT Technologies TTC8850-3006
Online
Wed 22.01.2025 time 08:30 - 11:00
(2 h 30 min)
Future IoT Technologies TTC8850-3006
P2_D431 Elektroniikkalaboratorio
Wed 29.01.2025 time 08:30 - 11:00
(2 h 30 min)
Future IoT Technologies TTC8850-3006
P2_D431 Elektroniikkalaboratorio
Wed 05.02.2025 time 08:30 - 11:00
(2 h 30 min)
Future IoT Technologies TTC8850-3006
Online
Wed 12.02.2025 time 08:30 - 11:00
(2 h 30 min)
Future IoT Technologies TTC8850-3006
P2_D431 Elektroniikkalaboratorio
Wed 19.02.2025 time 08:30 - 11:00
(2 h 30 min)
Future IoT Technologies TTC8850-3006
P2_D431 Elektroniikkalaboratorio
Wed 05.03.2025 time 08:30 - 11:00
(2 h 30 min)
Future IoT Technologies TTC8850-3006
P2_D431 Elektroniikkalaboratorio
Wed 12.03.2025 time 08:30 - 11:00
(2 h 30 min)
Future IoT Technologies TTC8850-3006
P2_D431 Elektroniikkalaboratorio
Wed 19.03.2025 time 08:30 - 11:00
(2 h 30 min)
Future IoT Technologies TTC8850-3006
P2_D431 Elektroniikkalaboratorio
Wed 26.03.2025 time 08:30 - 11:00
(2 h 30 min)
Future IoT Technologies TTC8850-3006
P2_D431 Elektroniikkalaboratorio
Wed 02.04.2025 time 08:30 - 11:00
(2 h 30 min)
Future IoT Technologies TTC8850-3006
P2_D431 Elektroniikkalaboratorio
Wed 09.04.2025 time 08:30 - 11:00
(2 h 30 min)
Future IoT Technologies TTC8850-3006
P2_D431 Elektroniikkalaboratorio
Wed 16.04.2025 time 08:30 - 11:00
(2 h 30 min)
Future IoT Technologies TTC8850-3006
Online
Wed 23.04.2025 time 08:30 - 11:00
(2 h 30 min)
Future IoT Technologies TTC8850-3006
P2_D431 Elektroniikkalaboratorio
Wed 30.04.2025 time 08:30 - 11:00
(2 h 30 min)
Future IoT Technologies TTC8850-3006
Online
Changes to reservations may be possible.

Evaluation scale

0-5

Objective

Course objectives
In the course, you will learn how to use advanced new technologies, such as artificial intelligence, in the implementation of IoT systems. You get to know different neural networks and understand their basic parameters.

Competences:
EUR-ACE Knowledge and Understanding
EUR-ACE Engineering Practice


You know the architectures of neural networks and understand their application areas. You know how to make a Q-table of basic neural network design and implementation in practice. You know what the RL agent does and you know how to train the agent to make it work optimally. You understand the difference between On-Policy and Off-Policy algorithms and know how to use information to select an algorithm.

Content

Comparison of neural networks (RL, Supervised, Unsupervised )
Keras, Pytorch and other algorithm-based neural networks
RL agent and environment
Exploitation and exploration
Reward and hyperparameters
Basic neuromath and activation functions
Policy gradient method and value based learning
Bellman equation and its demo (Q-learning)
Pytorch, PPO algorithm and demo

Assessment criteria, satisfactory (1)

Avoidance 1: You understand the principles of neural networks and can apply the knowledge to select them

Satisfactory 2: You understand the basics of Q-learning methods and can make a small application with it

Assessment criteria, good (3)

Good 3: Can adjust the parameter of the Bellman algorithm (Exploration, Exploitation, gamma +....) so that the operation of the controlled object is optimized

Excellent 4: You know how to tune a multilayer neural network using the PPO algorithm so that the given actuator behaves as desired.

Assessment criteria, excellent (5)

Excellent 5: In addition to the previous ones, you understand the limitations of artificial intelligence in various practical applications and understand that OpenAI-Gym models require a strong substance control. You also know how to document your work well, using TensorFlow outputs to evaluate hyperparameters.

Qualifications

Johdanto IoT-järjestelmiin

Go back to top of page