Skip to main content

Data Analysis (3 cr)

Code: TZLM7300-3017

General information


Enrollment
04.08.2025 - 21.08.2025
Registration for introductions has not started yet.
Timing
20.10.2025 - 19.12.2025
The implementation has not yet started.
Number of ECTS credits allocated
3 cr
Local portion
3 cr
Mode of delivery
Face-to-face
Unit
School of Technology
Campus
Main Campus
Teaching languages
Finnish
Seats
20 - 50
Degree programmes
Bachelor's Degree Programme in Logistics
Teachers
Kalle Niemi
Scheduling groups
TLS23SA (Capacity: 30 . Open UAS : 0.)
TLS23SB (Capacity: 30 . Open UAS : 0.)
Groups
TLS23SA
Logistiikka - tutkinto-ohjelma (AMK)
TLS23SB
Logistiikka - tutkinto-ohjelma (AMK)
TLS23S1
Logistiikka - tutkinto-ohjelma (AMK)
Small groups
TLS23SA
TLS23SB
Course
TZLM7300

Realization has 28 reservations. Total duration of reservations is 46 h 0 min.

Time Topic Location
Tue 21.10.2025 time 09:00 - 10:30
(1 h 30 min)
Datan analysointi TZLM7300-3017
R35F133 IT-laboratorio
Tue 21.10.2025 time 13:15 - 14:45
(1 h 30 min)
Datan analysointi TZLM7300-3017
R35F133 IT-laboratorio
Thu 23.10.2025 time 09:00 - 10:30
(1 h 30 min)
Datan analysointi TZLM7300-3017
R35F204 IT-tila
Thu 23.10.2025 time 13:15 - 14:45
(1 h 30 min)
Datan analysointi TZLM7300-3017
R35F204 IT-tila
Tue 28.10.2025 time 09:00 - 10:30
(1 h 30 min)
Datan analysointi TZLM7300-3017
R35F133 IT-laboratorio
Tue 28.10.2025 time 13:15 - 14:45
(1 h 30 min)
Datan analysointi TZLM7300-3017
R35F133 IT-laboratorio
Thu 30.10.2025 time 09:00 - 10:30
(1 h 30 min)
Datan analysointi TZLM7300-3017
R35F204 IT-tila
Thu 30.10.2025 time 13:15 - 14:45
(1 h 30 min)
Datan analysointi TZLM7300-3017
R35F204 IT-tila
Tue 04.11.2025 time 09:00 - 10:30
(1 h 30 min)
Datan analysointi TZLM7300-3017
R35F133 IT-laboratorio
Tue 04.11.2025 time 13:15 - 14:45
(1 h 30 min)
Datan analysointi TZLM7300-3017
R35F133 IT-laboratorio
Thu 06.11.2025 time 09:00 - 10:30
(1 h 30 min)
Datan analysointi TZLM7300-3017
R35F204 IT-tila
Thu 06.11.2025 time 13:15 - 14:45
(1 h 30 min)
Datan analysointi TZLM7300-3017
R35F204 IT-tila
Mon 10.11.2025 time 15:00 - 16:30
(1 h 30 min)
Datan analysointi TZLM7300-3017
R35F133 IT-laboratorio
Tue 11.11.2025 time 13:15 - 14:45
(1 h 30 min)
Datan analysointi TZLM7300-3017
R35F133 IT-laboratorio
Thu 13.11.2025 time 09:00 - 10:30
(1 h 30 min)
Datan analysointi TZLM7300-3017
R35F204 IT-tila
Thu 13.11.2025 time 13:15 - 14:45
(1 h 30 min)
Datan analysointi TZLM7300-3017
R35F204 IT-tila
Tue 18.11.2025 time 09:00 - 10:30
(1 h 30 min)
Datan analysointi TZLM7300-3017
R35F133 IT-laboratorio
Tue 18.11.2025 time 13:15 - 14:45
(1 h 30 min)
Datan analysointi TZLM7300-3017
R35F133 IT-laboratorio
Thu 20.11.2025 time 09:00 - 10:30
(1 h 30 min)
Datan analysointi TZLM7300-3017
R35F204 IT-tila
Thu 20.11.2025 time 13:15 - 14:45
(1 h 30 min)
Datan analysointi TZLM7300-3017
R35F204 IT-tila
Tue 25.11.2025 time 09:00 - 10:30
(1 h 30 min)
Datan analysointi TZLM7300-3017
R35F133 IT-laboratorio
Tue 25.11.2025 time 13:15 - 14:45
(1 h 30 min)
Datan analysointi TZLM7300-3017
R35F133 IT-laboratorio
Thu 27.11.2025 time 09:00 - 10:30
(1 h 30 min)
Datan analysointi TZLM7300-3017
R35F204 IT-tila
Thu 27.11.2025 time 13:15 - 14:45
(1 h 30 min)
Datan analysointi TZLM7300-3017
R35F204 IT-tila
Tue 02.12.2025 time 08:00 - 10:30
(2 h 30 min)
Datan analysointi TZLM7300-3017/ Koe
R35F133 IT-laboratorio
Thu 04.12.2025 time 08:00 - 10:30
(2 h 30 min)
Datan analysointi TZLM7300-3017/ Koe
R35F204 IT-tila
Mon 15.12.2025 time 11:30 - 14:00
(2 h 30 min)
Data Analysis TZLM7300-3016/ Resit
R35F204 IT-tila
Fri 16.01.2026 time 08:00 - 10:30
(2 h 30 min)
Data Analysis TZLM7300-3016, Datan analysointi TZLM7300-3017, Math1 Equations TZLM1300-3128
R35F204 IT-tila
Changes to reservations may be possible.

Evaluation scale

0-5

Objective

Purpose
After the course you will understand how analysis of statistical data can help an engineer to make better business decisions.

Learning outcomes
You can analyze, visualize and interpret small and big data to draw conclusions and make forecasts using statistical methods.

Content

Descriptive, exploratory, and prescriptive statistics
Confidence interval estimation and hypotheses testing
Multi-variable regression models
Time series analysis, smoothing and forecasting methods
Big data analysis using a computer
Use of Excel and some machine learning software

Materials

Morrison, S. J. (2009) Introduction to engineering statistics. Hoboken, NJ: Wiley
Hoerl, R & Snee, R. (2012) Statistical Thinking: Improving Business Performance. Hoboken, NJ: Wiley
Kelleher, Mac Namee & D'Arcy (2020) Fundamentals of Machine Learning for Predictive Data Analytics. Cambridge, MA: MIT Press
Other material accessible in Moodle

Teaching methods

The contact lessons are in a computer class and involve use of computers. The theory should be independently acquired before class exercises. The learning is accomplished by assignments where theory is put into practice.

Exam schedules

Exam in Week 49
Resits in Weeks 51 and 3/2026

Completion alternatives

The admission procedures are described in the degree rule and the study guide.

Student workload

Contact lessons about 25 hours
Independent study about 25 hours
Learning tasks about 30 hours

Assessment criteria, satisfactory (1)

Adequate 1
You have achieved the desired goals. You know a few of the concepts and methods and how to apply them in familiar situations but your reasoning is often deficient and you make mistakes in calculations.

Satisfactory 2
You have achieved the desired goals. You know many of the concepts and methods and how to apply them in familiar situations but your reasoning is sometimes deficient or you make mistakes in calculations.

Assessment criteria, good (3)

Good 3
You have achieved the desired goals. You know most of the concepts and methods and how to apply them in familiar situations showing often the ability to reason completely and calculate flawlessly

Very good 4
You have achieved the desired goals. You know most of the concepts and methods and how to apply them in new situations showing in most cases the ability to reason completely and calculate flawlessly.

Assessment criteria, excellent (5)

Excellent 5
You have achieved the desired goals. You know all the concepts and methods and how to apply them in new situations showing always the ability to combine things, reason completely and calculate flawlessly.

Qualifications

You master basic statistics and related Excel functions.

Further information

The assessment is based on learning tasks and exams.

An equivalent course in English TZLM7300-3016 Data Analysis.

Go back to top of page