Skip to main content

Applied mathematics: Optimization and Network Models (3 cr)

Code: TZLM7030-3013

General information


Timing
12.01.2026 - 30.04.2026
The implementation has not yet started.
Number of ECTS credits allocated
3 cr
Local portion
0 cr
Virtual portion
3 cr
Mode of delivery
Online learning
Unit
School of Technology
Teaching languages
English
Seats
0 - 35
Degree programmes
Bachelor's Degree Programme in Information and Communications Technology
Bachelor's Degree Programme in Information and Communications Technology
Teachers
Harri Varpanen
Groups
TTV23S2
Tieto- ja viestintätekniikka (AMK)
TTV23S3
Tieto- ja viestintätekniikka (AMK)
TTV23S5
Tieto- ja viestintätekniikka (AMK)
TTV23SM
Tieto- ja viestintätekniikka (AMK)
TIC23S1
Bachelor's Degree Programme in Information and Communications Technology
TTV23S1
Tieto- ja viestintätekniikka (AMK)
Course
TZLM7030
No reservations found for realization TZLM7030-3013!

Evaluation scale

0-5

Objective

Course objective

Network models and optimization is one of the alternatives for the applied mathematics courses of information and communication technology. In this course, you will focus your knowledge in systems sciences, i.e. operations research. You will learn about network optimization models that are actively used, e.g. in logistics and urban planning. You will also learn how to solve optimization problems programmatically using both network algorithms and more general linear algorithms.

Competences

EUR-ACE Knowledge and Understanding
- knowledge and understanding of natural scientific and mathematical principles in ICT
- knowledge and understanding of the own specialization field in engineering sciences at a level that enables achieving the other program outcomes including an understanding of requirements in your own field.

EUR-ACE Engineering Practice
- knowledge about the linear techniques and their limitations

Learning outcomes

You know the basic concepts related to networks. You know how to process networks programmatically and how to run optimization algorithms for networks. You understand how the elementary network algorithms work. You are able to formulate a linear optimization problem programmatically and find a solution for it. You understand the general principle of optimization and have familiarized yourself with some non-linear optimization problems.

Content

Directed and undirected graph. Graph coloring, scheduling problems. Minimal spanning tree, shortest path. Flow networks with applications. Linear optimization. Examples of non-linear optimization. Selected algorithms.

Assessment criteria, approved/failed

You know the basic concepts related to networks. You know how to process networks programmatically and how to run optimization algorithms for networks. You understand how the elementary network algorithms work. You are able to formulate a linear optimization problem programmatically and find a solution for it. You understand the general principle of optimization and have familiarized yourself with some non-linear optimization problems.

Qualifications

Ohjelmoinnin perusosaaminen

Go back to top of page