Data analytiikan ja koneoppimisen käytänteetLaajuus (4 op)
Tunnus: TTC8020
Laajuus
4 op
Opetuskieli
- suomi
Vastuuhenkilö
- Juha Peltomäki
- Tuomo Sipola
Osaamistavoitteet
Ymmärrät data-analytiikan ja koneoppimisen käytänteet ja projektin rakenteen ja kulun. Ymmärrät, millä tavalla datapohjainen projekti suunnitellaan, rakennetaan ja toteutetaan. Tunnistat myös datapohjaisten projektien keskeisen terminologian ja yleisimmät käytänteet. Ymmärrät datan visualisoinnin merkityksen. Tiedät opetus- ja testijoukon käsitteet ja yleisimmät tavat niihin jakamiseen. Saat perustiedot käytetyimmistä data-analytiikan ja koneoppimisen työkaluista.
EUR-ACE-osaamiset:
Tieto ja ymmärrys
Tekniikan soveltaminen käytäntöön
Sisältö
- Dataan pohjautuvan projektin rakenne ja toteutus
- Data-analytiikan ja koneoppimisen käytänteet
- Opetus- ja testijoukon käsitteet ja yleisimmät tavat niiden jakamiseen
- Datapohjaisen projektin dokumentointi ja visualisointi
- Esittely data-analytiikka ja koneoppimisen yleisimpiin työkaluihin ja niihin tarvittava käytännön osaaminen
Arviointikriteerit, tyydyttävä (1)
Tyydyttävä 2: Tunnet data-analytiikka ja koneoppimisen projektin eri vaiheet. Osaat suunnitella data-analytiikan ja koneoppimisen projektin vaiheet. Lisäksi osaat pintapuolisesti toteutuksensa ja perustella johtopäätökset.
Välttävä 1: Tunnet data-analytiikka ja koneoppimisen projektin eri vaiheet. Osaat pintapuolisesti suunnitella data-analytiikan ja koneoppimisen projektin vaiheet. Lisäksi osaat arvioida suppeasti toteutuksensa ja tekemänsä johtopäätökset.
Arviointikriteerit, hyvä (3)
Kiitettävä 4: Tunnet data-analytiikka ja koneoppimisen projektin eri vaiheet ja osaa systemaattisesti edetä vaihe vaiheelta. Osaat suunnitella data-analytiikan ja koneoppimisen projektin vaiheet riippumatta ratkaistavasta ongelmasta. Lisäksi osaat monipuolisesti arvioida toteutuksensa ja perustella johtopäätökset.
Hyvä 3: Tunnet data-analytiikka ja koneoppimisen projektin eri vaiheet ja osaa edetä vaihe vaiheelta. Osaat suunnitella data-analytiikan ja koneoppimisen projektin vaiheet riippumatta ratkaistavasta ongelmasta. Lisäksi osaat monipuolisesti arvioida toteutuksensa ja perustella johtopäätökset.
Arviointikriteerit, kiitettävä (5)
Erinomainen 5: Tunnet data-analytiikka ja koneoppimisen projektin eri vaiheet ja osaa systemaattisesti edetä vaihe vaiheelta. Osaat suunnitella data-analytiikan ja koneoppimisen projektin vaiheet riippumatta ratkaistavasta ongelmasta. Lisäksi osaat arvioida kriittisesti toteutuksensa ja perustella johtopäätökset.
Enrollment
18.11.2024 - 09.01.2025
Timing
24.03.2025 - 30.04.2025
Number of ECTS credits allocated
4 op
Virtual portion
4 op
Mode of delivery
Online learning
Unit
School of Technology
Teaching languages
- English
Seats
0 - 70
Degree programmes
- Bachelor's Degree Programme in Information and Communications Technology
- Bachelor's Degree Programme in Information and Communications Technology
Teachers
- Juha Peltomäki
Groups
-
TTV22S5Tieto- ja viestintätekniikka (AMK)
-
TTV22S2Tieto- ja viestintätekniikka (AMK)
-
TTV22S3Tieto- ja viestintätekniikka (AMK)
-
TIC22S1Bachelor's Degree Programme in Information and Communications Technology
-
TTV22S1Tieto- ja viestintätekniikka (AMK)
-
TTV22SMTieto- ja viestintätekniikka (AMK)
-
TTV22S4Tieto- ja viestintätekniikka (AMK)
-
TTV22SM2Tieto- ja viestintätekniikka (AMK)
-
ZJA25KTIDA1Avoin amk, Data-analytiikka 1, Verkko
Objective
You understand the practices of data analytics and machine learning and the structure and flow of the project. You understand how a data-based project is designed, built and implemented. You will also recognize the key terminology and most common practices of data-based projects. You understand the importance of data visualization. You know the concepts of the teaching and test dataset and the most common ways of splitting them. You will get basic information about the data analytics and machine learning tools used.
EUR-ACE Competences:
Knowledge and Understanding
Engineering Practice
Content
- Structure and implementation of a data-based project
- Data analytics and machine learning practices
- The concepts of the teaching and test data set and the most common ways of splitting them
- Documentation and visualization of the data-based project
- Introduction to data analytics and machine learning's most common tools and practical skills needed
Location and time
The course will be implemented in the spring semester of 2025.
Oppimateriaali ja suositeltava kirjallisuus
Materiaali harjoitustehtäviä ja opiskeltavia asiasisältöjä varten jaetaan kurssin aikana.
Teaching methods
Virtual study including doing assignments and familiarizing yourself with related lecture and example materials. Assignments are mainly done as group work.
Employer connections
The aim is to connect the content of the course to problems that occur in working life.
Vaihtoehtoiset suoritustavat
The admission procedures are described in the degree rule and the study guide. The teacher of the course will give you more information on possible specific course practices.
Student workload
The workload of one credit corresponds to 27 hours of study. The total amount of study work (4 ECTS) in the course is 108 hours.
Further information
The course is evaluated on the basis of the assignments, which must be returned by the given timetables.
The assessment methods are reviewed at the beginning of the course.
Evaluation scale
0-5
Arviointikriteerit, tyydyttävä (1-2)
Satisfactory 2: The student knows the various phases of a data analytics and machine learning project. The student is able to design the phases of a data analytics and machine learning project. Additionally, the student knows their implementation at a cursory level and is able to validate their conclusions.
Sufficient 1: The student knows the various phases of a data analytics and machine learning project. The student is able to design the phases of a data analytics and machine learning project at a cursory level. Additionally, the student is able to assess their implementation and conclusions.
Arviointikriteerit, hyvä (3-4)
Very good 4: The student knows the various phases of a data analytics and machine learning project and is able to proceed step by step. The student is able to design the phases of data analytics and machine learning project regardless of the problem to be solved. In addition, the student is able to assess their implementation and validate the conclusions.
Good 3: The student knows the variousphases of a data analytics and machine learning project and is able to proceed step by step. The student is able to design the phases of a data analytics and machine learning project regardless of the problem to be solved. Additionally, the student is able to assess their implementation in a versatile manner and to validate the conclusions.
Assessment criteria, excellent (5)
Excellent 5: The student knows the various phases of a data analytics and machine learning project and is able to systematically proceed step by step. The student is able to design the phases of a data analytics and machine learning project regardless of the problem to be solved. Additionally, the student is able to assess critically their implementation and validate the conclusions.
Ilmoittautumisaika
01.08.2024 - 22.08.2024
Ajoitus
11.11.2024 - 18.12.2024
Opintopistemäärä
4 op
Virtuaaliosuus
4 op
Toteutustapa
Verkko-opetus
Yksikkö
Teknologiayksikkö
Opetuskielet
- Suomi
Paikat
0 - 35
Koulutus
- Tieto- ja viestintätekniikka (AMK)
Opettaja
- Juha Peltomäki
Ryhmät
-
TTV22S5Tieto- ja viestintätekniikka (AMK)
-
TTV22S2Tieto- ja viestintätekniikka (AMK)
-
TTV22S3Tieto- ja viestintätekniikka (AMK)
-
TTV22S1Tieto- ja viestintätekniikka (AMK)
-
TTV22SMTieto- ja viestintätekniikka (AMK)
-
TTV22S4Tieto- ja viestintätekniikka (AMK)
-
TTV22SM2Tieto- ja viestintätekniikka (AMK)
-
ZJA24STIDA1Avoin amk, Data-analytiikka 1, Verkko
Tavoitteet
Ymmärrät data-analytiikan ja koneoppimisen käytänteet ja projektin rakenteen ja kulun. Ymmärrät, millä tavalla datapohjainen projekti suunnitellaan, rakennetaan ja toteutetaan. Tunnistat myös datapohjaisten projektien keskeisen terminologian ja yleisimmät käytänteet. Ymmärrät datan visualisoinnin merkityksen. Tiedät opetus- ja testijoukon käsitteet ja yleisimmät tavat niihin jakamiseen. Saat perustiedot käytetyimmistä data-analytiikan ja koneoppimisen työkaluista.
EUR-ACE-osaamiset:
Tieto ja ymmärrys
Tekniikan soveltaminen käytäntöön
Sisältö
- Dataan pohjautuvan projektin rakenne ja toteutus
- Data-analytiikan ja koneoppimisen käytänteet
- Opetus- ja testijoukon käsitteet ja yleisimmät tavat niiden jakamiseen
- Datapohjaisen projektin dokumentointi ja visualisointi
- Esittely data-analytiikka ja koneoppimisen yleisimpiin työkaluihin ja niihin tarvittava käytännön osaaminen
Aika ja paikka
Opintojakso toteutetaan syyslukukaudella 2024.
Oppimateriaali ja suositeltava kirjallisuus
Materiaali harjoitustehtäviä ja opiskeltavia asiasisältöjä varten jaetaan kurssin aikana.
Opetusmenetelmät
Virtuaalinen opiskelu sisältäen harjoitustehtävien tekemisen sekä niihin liittyviin luento- ja esimerkkimateriaaleihin perehtymisen.
Harjoitustehtävät tehdään yksilö- tai paritöinä.
Harjoittelu- ja työelämäyhteistyö
Opintojakson sisältö pyritään kytkemään työelämässä esiintyviin ongelmiin.
Vaihtoehtoiset suoritustavat
Hyväksilukemisen menettelytavat kuvataan tutkintosäännössä ja opinto-oppaassa. Opintojakson opettaja antaa lisätietoa mahdollisista opintojakson erityiskäytänteistä.
Opiskelijan ajankäyttö ja kuormitus
Yhden opintopisteen työmäärä vastaa 27 tunnin opiskelutyötä. Yhteensä opiskelutyömäärä (4 op) kurssilla on 108 tuntia.
Lisätietoja opiskelijoille
Opintojakso arvioidaan palautettujen harjoitustehtävien perusteella, jotka tulee palauttaa annettuihin aikatauluihin mennessä.
Arviointimenetelmät käydään läpi opintojakson alussa.
Arviointiasteikko
0-5
Arviointikriteerit, tyydyttävä (1-2)
Tyydyttävä 2: Tunnet data-analytiikka ja koneoppimisen projektin eri vaiheet. Osaat suunnitella data-analytiikan ja koneoppimisen projektin vaiheet. Lisäksi osaat pintapuolisesti toteutuksensa ja perustella johtopäätökset.
Välttävä 1: Tunnet data-analytiikka ja koneoppimisen projektin eri vaiheet. Osaat pintapuolisesti suunnitella data-analytiikan ja koneoppimisen projektin vaiheet. Lisäksi osaat arvioida suppeasti toteutuksensa ja tekemänsä johtopäätökset.
Arviointikriteerit, hyvä (3-4)
Kiitettävä 4: Tunnet data-analytiikka ja koneoppimisen projektin eri vaiheet ja osaa systemaattisesti edetä vaihe vaiheelta. Osaat suunnitella data-analytiikan ja koneoppimisen projektin vaiheet riippumatta ratkaistavasta ongelmasta. Lisäksi osaat monipuolisesti arvioida toteutuksensa ja perustella johtopäätökset.
Hyvä 3: Tunnet data-analytiikka ja koneoppimisen projektin eri vaiheet ja osaa edetä vaihe vaiheelta. Osaat suunnitella data-analytiikan ja koneoppimisen projektin vaiheet riippumatta ratkaistavasta ongelmasta. Lisäksi osaat monipuolisesti arvioida toteutuksensa ja perustella johtopäätökset.
Arviointikriteerit, kiitettävä (5)
Erinomainen 5: Tunnet data-analytiikka ja koneoppimisen projektin eri vaiheet ja osaa systemaattisesti edetä vaihe vaiheelta. Osaat suunnitella data-analytiikan ja koneoppimisen projektin vaiheet riippumatta ratkaistavasta ongelmasta. Lisäksi osaat arvioida kriittisesti toteutuksensa ja perustella johtopäätökset.
Enrollment
20.11.2023 - 04.01.2024
Timing
24.03.2024 - 30.04.2024
Number of ECTS credits allocated
4 op
Virtual portion
4 op
Mode of delivery
Online learning
Unit
School of Technology
Teaching languages
- English
Seats
0 - 30
Degree programmes
- Bachelor's Degree Programme in Information and Communications Technology
- Bachelor's Degree Programme in Information and Communications Technology
Teachers
- Juha Peltomäki
Groups
-
TTV21S3Tieto- ja viestintätekniikka (AMK)
-
TTV21S5Tieto- ja viestintätekniikka (AMK)
-
TTV21SMTieto- ja viestintätekniikka (AMK)
-
TIC21S1Bachelor's Degree Programme in Information and Communications Technology
-
TTV21S2Tieto- ja viestintätekniikka (AMK)
-
ZJA24KTIDA1Avoin amk, Data-analytiikka 1, Verkko
-
TTV21S1Tieto- ja viestintätekniikka (AMK)
Objective
You understand the practices of data analytics and machine learning and the structure and flow of the project. You understand how a data-based project is designed, built and implemented. You will also recognize the key terminology and most common practices of data-based projects. You understand the importance of data visualization. You know the concepts of the teaching and test dataset and the most common ways of splitting them. You will get basic information about the data analytics and machine learning tools used.
EUR-ACE Competences:
Knowledge and Understanding
Engineering Practice
Content
- Structure and implementation of a data-based project
- Data analytics and machine learning practices
- The concepts of the teaching and test data set and the most common ways of splitting them
- Documentation and visualization of the data-based project
- Introduction to data analytics and machine learning's most common tools and practical skills needed
Location and time
The course will be implemented in the spring semester of 2024.
Oppimateriaali ja suositeltava kirjallisuus
Materiaali harjoitustehtäviä ja opiskeltavia asiasisältöjä varten jaetaan kurssin aikana.
Teaching methods
Virtual study including doing assignments and familiarizing yourself with related lecture and example materials. Assignments are mainly done as group work.
Employer connections
The aim is to connect the content of the course to problems that occur in working life.
Vaihtoehtoiset suoritustavat
The admission procedures are described in the degree rule and the study guide. The teacher of the course will give you more information on possible specific course practices.
Student workload
The workload of one credit corresponds to 27 hours of study. The total amount of study work (4 ECTS) in the course is 108 hours.
Further information
The course is evaluated on the basis of the assignments, which must be returned by the given timetables.
The assessment methods are reviewed at the beginning of the course.
Evaluation scale
0-5
Arviointikriteerit, tyydyttävä (1-2)
Satisfactory 2: The student knows the various phases of a data analytics and machine learning project. The student is able to design the phases of a data analytics and machine learning project. Additionally, the student knows their implementation at a cursory level and is able to validate their conclusions.
Sufficient 1: The student knows the various phases of a data analytics and machine learning project. The student is able to design the phases of a data analytics and machine learning project at a cursory level. Additionally, the student is able to assess their implementation and conclusions.
Arviointikriteerit, hyvä (3-4)
Very good 4: The student knows the various phases of a data analytics and machine learning project and is able to proceed step by step. The student is able to design the phases of data analytics and machine learning project regardless of the problem to be solved. In addition, the student is able to assess their implementation and validate the conclusions.
Good 3: The student knows the variousphases of a data analytics and machine learning project and is able to proceed step by step. The student is able to design the phases of a data analytics and machine learning project regardless of the problem to be solved. Additionally, the student is able to assess their implementation in a versatile manner and to validate the conclusions.
Assessment criteria, excellent (5)
Excellent 5: The student knows the various phases of a data analytics and machine learning project and is able to systematically proceed step by step. The student is able to design the phases of a data analytics and machine learning project regardless of the problem to be solved. Additionally, the student is able to assess critically their implementation and validate the conclusions.
Ilmoittautumisaika
01.08.2023 - 24.08.2023
Ajoitus
13.11.2023 - 19.12.2023
Opintopistemäärä
4 op
Virtuaaliosuus
4 op
Toteutustapa
Verkko-opetus
Yksikkö
Teknologiayksikkö
Opetuskielet
- Suomi
Paikat
0 - 30
Koulutus
- Tieto- ja viestintätekniikka (AMK)
Opettaja
- Juha Peltomäki
Ryhmät
-
TTV21S3Tieto- ja viestintätekniikka (AMK)
-
TTV21S5Tieto- ja viestintätekniikka (AMK)
-
TTV21SMTieto- ja viestintätekniikka (AMK)
-
TTV21S2Tieto- ja viestintätekniikka (AMK)
-
ZJA23STIDA1Avoin amk, Data-analytiikka 1, Verkko
-
TTV21S1Tieto- ja viestintätekniikka (AMK)
Tavoitteet
Ymmärrät data-analytiikan ja koneoppimisen käytänteet ja projektin rakenteen ja kulun. Ymmärrät, millä tavalla datapohjainen projekti suunnitellaan, rakennetaan ja toteutetaan. Tunnistat myös datapohjaisten projektien keskeisen terminologian ja yleisimmät käytänteet. Ymmärrät datan visualisoinnin merkityksen. Tiedät opetus- ja testijoukon käsitteet ja yleisimmät tavat niihin jakamiseen. Saat perustiedot käytetyimmistä data-analytiikan ja koneoppimisen työkaluista.
EUR-ACE-osaamiset:
Tieto ja ymmärrys
Tekniikan soveltaminen käytäntöön
Sisältö
- Dataan pohjautuvan projektin rakenne ja toteutus
- Data-analytiikan ja koneoppimisen käytänteet
- Opetus- ja testijoukon käsitteet ja yleisimmät tavat niiden jakamiseen
- Datapohjaisen projektin dokumentointi ja visualisointi
- Esittely data-analytiikka ja koneoppimisen yleisimpiin työkaluihin ja niihin tarvittava käytännön osaaminen
Aika ja paikka
Opintojakso toteutetaan syyslukukaudella 2023.
Oppimateriaali ja suositeltava kirjallisuus
Materiaali harjoitustehtäviä ja opiskeltavia asiasisältöjä varten jaetaan kurssin aikana.
Opetusmenetelmät
Virtuaalinen opiskelu sisältäen harjoitustehtävien tekemisen sekä niihin liittyviin luento- ja esimerkkimateriaaleihin perehtymisen.
Harjoitustehtävät tehdään pääsääntöisesti ryhmätöinä.
Harjoittelu- ja työelämäyhteistyö
Opintojakson sisältö pyritään kytkemään työelämässä esiintyviin ongelmiin.
Vaihtoehtoiset suoritustavat
Hyväksilukemisen menettelytavat kuvataan tutkintosäännössä ja opinto-oppaassa. Opintojakson opettaja antaa lisätietoa mahdollisista opintojakson erityiskäytänteistä.
Opiskelijan ajankäyttö ja kuormitus
Yhden opintopisteen työmäärä vastaa 27 tunnin opiskelutyötä. Yhteensä opiskelutyömäärä (4 op) kurssilla on 108 tuntia.
Lisätietoja opiskelijoille
Opintojakso arvioidaan palautettujen harjoitustehtävien perusteella, jotka tulee palauttaa annettuihin aikatauluihin mennessä.
Arviointimenetelmät käydään läpi opintojakson alussa.
Arviointiasteikko
0-5
Arviointikriteerit, tyydyttävä (1-2)
Tyydyttävä 2: Tunnet data-analytiikka ja koneoppimisen projektin eri vaiheet. Osaat suunnitella data-analytiikan ja koneoppimisen projektin vaiheet. Lisäksi osaat pintapuolisesti toteutuksensa ja perustella johtopäätökset.
Välttävä 1: Tunnet data-analytiikka ja koneoppimisen projektin eri vaiheet. Osaat pintapuolisesti suunnitella data-analytiikan ja koneoppimisen projektin vaiheet. Lisäksi osaat arvioida suppeasti toteutuksensa ja tekemänsä johtopäätökset.
Arviointikriteerit, hyvä (3-4)
Kiitettävä 4: Tunnet data-analytiikka ja koneoppimisen projektin eri vaiheet ja osaa systemaattisesti edetä vaihe vaiheelta. Osaat suunnitella data-analytiikan ja koneoppimisen projektin vaiheet riippumatta ratkaistavasta ongelmasta. Lisäksi osaat monipuolisesti arvioida toteutuksensa ja perustella johtopäätökset.
Hyvä 3: Tunnet data-analytiikka ja koneoppimisen projektin eri vaiheet ja osaa edetä vaihe vaiheelta. Osaat suunnitella data-analytiikan ja koneoppimisen projektin vaiheet riippumatta ratkaistavasta ongelmasta. Lisäksi osaat monipuolisesti arvioida toteutuksensa ja perustella johtopäätökset.
Arviointikriteerit, kiitettävä (5)
Erinomainen 5: Tunnet data-analytiikka ja koneoppimisen projektin eri vaiheet ja osaa systemaattisesti edetä vaihe vaiheelta. Osaat suunnitella data-analytiikan ja koneoppimisen projektin vaiheet riippumatta ratkaistavasta ongelmasta. Lisäksi osaat arvioida kriittisesti toteutuksensa ja perustella johtopäätökset.
Ajoitus
16.01.2023 - 23.02.2023
Opintopistemäärä
4 op
Toteutustapa
Lähiopetus
Yksikkö
Teknologiayksikkö
Toimipiste
Lutakon kampus
Opetuskielet
- Suomi
Koulutus
- Tieto- ja viestintätekniikka (AMK)
Opettaja
- Juha Peltomäki
Ryhmät
-
ZJA23KTIDA1Avoin amk, Data-analytiikka 1, Verkko
Tavoitteet
Ymmärrät data-analytiikan ja koneoppimisen käytänteet ja projektin rakenteen ja kulun. Ymmärrät, millä tavalla datapohjainen projekti suunnitellaan, rakennetaan ja toteutetaan. Tunnistat myös datapohjaisten projektien keskeisen terminologian ja yleisimmät käytänteet. Ymmärrät datan visualisoinnin merkityksen. Tiedät opetus- ja testijoukon käsitteet ja yleisimmät tavat niihin jakamiseen. Saat perustiedot käytetyimmistä data-analytiikan ja koneoppimisen työkaluista.
EUR-ACE-osaamiset:
Tieto ja ymmärrys
Tekniikan soveltaminen käytäntöön
Sisältö
- Dataan pohjautuvan projektin rakenne ja toteutus
- Data-analytiikan ja koneoppimisen käytänteet
- Opetus- ja testijoukon käsitteet ja yleisimmät tavat niiden jakamiseen
- Datapohjaisen projektin dokumentointi ja visualisointi
- Esittely data-analytiikka ja koneoppimisen yleisimpiin työkaluihin ja niihin tarvittava käytännön osaaminen
Aika ja paikka
Opintojakso toteutetaan kevätlukukaudella 2023.
Oppimateriaali ja suositeltava kirjallisuus
Materiaali harjoitustehtäviä ja opiskeltavia asiasisältöjä varten jaetaan kurssin aikana.
Opetusmenetelmät
Virtuaalinen opiskelu sisältäen harjoitustehtävien tekemisen sekä niihin liittyviin luento- ja esimerkkimateriaaleihin perehtymisen.
Harjoitustehtävät tehdään pääsääntöisesti ryhmätöinä.
Harjoittelu- ja työelämäyhteistyö
Opintojakson sisältö pyritään kytkemään työelämässä esiintyviin ongelmiin.
Tenttien ajankohdat ja uusintamahdollisuudet
Opintojakso arvioidaan palautettujen harjoitustehtävien avulla. Palautukset tulee suorittaa annettuihin aikatauluihin mennessä.
Vaihtoehtoiset suoritustavat
Hyväksilukemisen menettelytavat kuvataan tutkintosäännössä ja opinto-oppaassa. Opintojakson opettaja antaa lisätietoa mahdollisista opintojakson erityiskäytänteistä.
Opiskelijan ajankäyttö ja kuormitus
Yhden opintopisteen työmäärä vastaa 27 tunnin opiskelutyötä. Yhteensä opiskelutyömäärä (4 op) kurssilla on 108 tuntia.
Lisätietoja opiskelijoille
Arviointimenetelmät käydään läpi opintojakson alussa.
Arviointiasteikko
0-5
Arviointikriteerit, tyydyttävä (1-2)
Tyydyttävä 2: Tunnet data-analytiikka ja koneoppimisen projektin eri vaiheet. Osaat suunnitella data-analytiikan ja koneoppimisen projektin vaiheet. Lisäksi osaat pintapuolisesti toteutuksensa ja perustella johtopäätökset.
Välttävä 1: Tunnet data-analytiikka ja koneoppimisen projektin eri vaiheet. Osaat pintapuolisesti suunnitella data-analytiikan ja koneoppimisen projektin vaiheet. Lisäksi osaat arvioida suppeasti toteutuksensa ja tekemänsä johtopäätökset.
Arviointikriteerit, hyvä (3-4)
Kiitettävä 4: Tunnet data-analytiikka ja koneoppimisen projektin eri vaiheet ja osaa systemaattisesti edetä vaihe vaiheelta. Osaat suunnitella data-analytiikan ja koneoppimisen projektin vaiheet riippumatta ratkaistavasta ongelmasta. Lisäksi osaat monipuolisesti arvioida toteutuksensa ja perustella johtopäätökset.
Hyvä 3: Tunnet data-analytiikka ja koneoppimisen projektin eri vaiheet ja osaa edetä vaihe vaiheelta. Osaat suunnitella data-analytiikan ja koneoppimisen projektin vaiheet riippumatta ratkaistavasta ongelmasta. Lisäksi osaat monipuolisesti arvioida toteutuksensa ja perustella johtopäätökset.
Arviointikriteerit, kiitettävä (5)
Erinomainen 5: Tunnet data-analytiikka ja koneoppimisen projektin eri vaiheet ja osaa systemaattisesti edetä vaihe vaiheelta. Osaat suunnitella data-analytiikan ja koneoppimisen projektin vaiheet riippumatta ratkaistavasta ongelmasta. Lisäksi osaat arvioida kriittisesti toteutuksensa ja perustella johtopäätökset.
Ilmoittautumisaika
01.11.2022 - 05.01.2023
Ajoitus
16.01.2023 - 23.02.2023
Opintopistemäärä
4 op
Virtuaaliosuus
4 op
Toteutustapa
Verkko-opetus
Yksikkö
Teknologiayksikkö
Toimipiste
Lutakon kampus
Opetuskielet
- Suomi
Paikat
0 - 30
Koulutus
- Tieto- ja viestintätekniikka (AMK)
Opettaja
- Juha Peltomäki
Tavoitteet
Ymmärrät data-analytiikan ja koneoppimisen käytänteet ja projektin rakenteen ja kulun. Ymmärrät, millä tavalla datapohjainen projekti suunnitellaan, rakennetaan ja toteutetaan. Tunnistat myös datapohjaisten projektien keskeisen terminologian ja yleisimmät käytänteet. Ymmärrät datan visualisoinnin merkityksen. Tiedät opetus- ja testijoukon käsitteet ja yleisimmät tavat niihin jakamiseen. Saat perustiedot käytetyimmistä data-analytiikan ja koneoppimisen työkaluista.
EUR-ACE-osaamiset:
Tieto ja ymmärrys
Tekniikan soveltaminen käytäntöön
Sisältö
- Dataan pohjautuvan projektin rakenne ja toteutus
- Data-analytiikan ja koneoppimisen käytänteet
- Opetus- ja testijoukon käsitteet ja yleisimmät tavat niiden jakamiseen
- Datapohjaisen projektin dokumentointi ja visualisointi
- Esittely data-analytiikka ja koneoppimisen yleisimpiin työkaluihin ja niihin tarvittava käytännön osaaminen
Aika ja paikka
Opintojakso toteutetaan kevätlukukaudella 2023.
Oppimateriaali ja suositeltava kirjallisuus
Materiaali harjoitustehtäviä ja opiskeltavia asiasisältöjä varten jaetaan kurssin aikana.
Opetusmenetelmät
Virtuaalinen opiskelu sisältäen harjoitustehtävien tekemisen sekä niihin liittyviin luento- ja esimerkkimateriaaleihin perehtymisen.
Harjoitustehtävät tehdään pääsääntöisesti ryhmätöinä.
Harjoittelu- ja työelämäyhteistyö
Opintojakson sisältö pyritään kytkemään työelämässä esiintyviin ongelmiin.
Tenttien ajankohdat ja uusintamahdollisuudet
Opintojakso arvioidaan palautettujen harjoitustehtävien avulla. Palautukset tulee suorittaa annettuihin aikatauluihin mennessä.
Vaihtoehtoiset suoritustavat
Hyväksilukemisen menettelytavat kuvataan tutkintosäännössä ja opinto-oppaassa. Opintojakson opettaja antaa lisätietoa mahdollisista opintojakson erityiskäytänteistä.
Opiskelijan ajankäyttö ja kuormitus
Yhden opintopisteen työmäärä vastaa 27 tunnin opiskelutyötä. Yhteensä opiskelutyömäärä (4 op) kurssilla on 108 tuntia.
Lisätietoja opiskelijoille
Arviointimenetelmät käydään läpi opintojakson alussa.
Arviointiasteikko
0-5
Arviointikriteerit, tyydyttävä (1-2)
Tyydyttävä 2: Tunnet data-analytiikka ja koneoppimisen projektin eri vaiheet. Osaat suunnitella data-analytiikan ja koneoppimisen projektin vaiheet. Lisäksi osaat pintapuolisesti toteutuksensa ja perustella johtopäätökset.
Välttävä 1: Tunnet data-analytiikka ja koneoppimisen projektin eri vaiheet. Osaat pintapuolisesti suunnitella data-analytiikan ja koneoppimisen projektin vaiheet. Lisäksi osaat arvioida suppeasti toteutuksensa ja tekemänsä johtopäätökset.
Arviointikriteerit, hyvä (3-4)
Kiitettävä 4: Tunnet data-analytiikka ja koneoppimisen projektin eri vaiheet ja osaa systemaattisesti edetä vaihe vaiheelta. Osaat suunnitella data-analytiikan ja koneoppimisen projektin vaiheet riippumatta ratkaistavasta ongelmasta. Lisäksi osaat monipuolisesti arvioida toteutuksensa ja perustella johtopäätökset.
Hyvä 3: Tunnet data-analytiikka ja koneoppimisen projektin eri vaiheet ja osaa edetä vaihe vaiheelta. Osaat suunnitella data-analytiikan ja koneoppimisen projektin vaiheet riippumatta ratkaistavasta ongelmasta. Lisäksi osaat monipuolisesti arvioida toteutuksensa ja perustella johtopäätökset.
Arviointikriteerit, kiitettävä (5)
Erinomainen 5: Tunnet data-analytiikka ja koneoppimisen projektin eri vaiheet ja osaa systemaattisesti edetä vaihe vaiheelta. Osaat suunnitella data-analytiikan ja koneoppimisen projektin vaiheet riippumatta ratkaistavasta ongelmasta. Lisäksi osaat arvioida kriittisesti toteutuksensa ja perustella johtopäätökset.
Ajoitus
05.09.2022 - 16.10.2022
Opintopistemäärä
4 op
Toteutustapa
Lähiopetus
Yksikkö
Teknologiayksikkö
Opetuskielet
- Suomi
Koulutus
- Tieto- ja viestintätekniikka (AMK)
Opettaja
- Juha Peltomäki
Ryhmät
-
ZJA22STIDA1Avoin amk, Data-analytiikka 1, Verkko
Tavoitteet
Ymmärrät data-analytiikan ja koneoppimisen käytänteet ja projektin rakenteen ja kulun. Ymmärrät, millä tavalla datapohjainen projekti suunnitellaan, rakennetaan ja toteutetaan. Tunnistat myös datapohjaisten projektien keskeisen terminologian ja yleisimmät käytänteet. Ymmärrät datan visualisoinnin merkityksen. Tiedät opetus- ja testijoukon käsitteet ja yleisimmät tavat niihin jakamiseen. Saat perustiedot käytetyimmistä data-analytiikan ja koneoppimisen työkaluista.
EUR-ACE-osaamiset:
Tieto ja ymmärrys
Tekniikan soveltaminen käytäntöön
Sisältö
- Dataan pohjautuvan projektin rakenne ja toteutus
- Data-analytiikan ja koneoppimisen käytänteet
- Opetus- ja testijoukon käsitteet ja yleisimmät tavat niiden jakamiseen
- Datapohjaisen projektin dokumentointi ja visualisointi
- Esittely data-analytiikka ja koneoppimisen yleisimpiin työkaluihin ja niihin tarvittava käytännön osaaminen
Aika ja paikka
Opintojakso toteutetaan syyslukukaudella 2022.
Oppimateriaali ja suositeltava kirjallisuus
Materiaali harjoitustehtäviä ja opiskeltavia asiasisältöjä varten jaetaan kurssin aikana.
Opetusmenetelmät
Virtuaalinen opiskelu sisältäen harjoitustehtävien tekemisen sekä niihin liittyviin luento- ja esimerkkimateriaaleihin perehtymisen.
Harjoitustehtävät tehdään pääsääntöisesti ryhmätöinä.
Harjoittelu- ja työelämäyhteistyö
Opintojakson sisältö pyritään kytkemään työelämässä esiintyviin ongelmiin.
Tenttien ajankohdat ja uusintamahdollisuudet
Opintojakso arvioidaan palautettujen harjoitustehtävien avulla. Palautukset tulee suorittaa annettuihin aikatauluihin mennessä.
Vaihtoehtoiset suoritustavat
Hyväksilukemisen menettelytavat kuvataan tutkintosäännössä ja opinto-oppaassa. Opintojakson opettaja antaa lisätietoa mahdollisista opintojakson erityiskäytänteistä.
Opiskelijan ajankäyttö ja kuormitus
Yhden opintopisteen työmäärä vastaa 27 tunnin opiskelutyötä. Yhteensä opiskelutyömäärä (4 op) kurssilla on 108 tuntia.
Lisätietoja opiskelijoille
Arviointimenetelmät käydään läpi opintojakson alussa.
Arviointiasteikko
0-5
Arviointikriteerit, tyydyttävä (1-2)
Tyydyttävä 2: Tunnet data-analytiikka ja koneoppimisen projektin eri vaiheet. Osaat suunnitella data-analytiikan ja koneoppimisen projektin vaiheet. Lisäksi osaat pintapuolisesti toteutuksensa ja perustella johtopäätökset.
Välttävä 1: Tunnet data-analytiikka ja koneoppimisen projektin eri vaiheet. Osaat pintapuolisesti suunnitella data-analytiikan ja koneoppimisen projektin vaiheet. Lisäksi osaat arvioida suppeasti toteutuksensa ja tekemänsä johtopäätökset.
Arviointikriteerit, hyvä (3-4)
Kiitettävä 4: Tunnet data-analytiikka ja koneoppimisen projektin eri vaiheet ja osaa systemaattisesti edetä vaihe vaiheelta. Osaat suunnitella data-analytiikan ja koneoppimisen projektin vaiheet riippumatta ratkaistavasta ongelmasta. Lisäksi osaat monipuolisesti arvioida toteutuksensa ja perustella johtopäätökset.
Hyvä 3: Tunnet data-analytiikka ja koneoppimisen projektin eri vaiheet ja osaa edetä vaihe vaiheelta. Osaat suunnitella data-analytiikan ja koneoppimisen projektin vaiheet riippumatta ratkaistavasta ongelmasta. Lisäksi osaat monipuolisesti arvioida toteutuksensa ja perustella johtopäätökset.
Arviointikriteerit, kiitettävä (5)
Erinomainen 5: Tunnet data-analytiikka ja koneoppimisen projektin eri vaiheet ja osaa systemaattisesti edetä vaihe vaiheelta. Osaat suunnitella data-analytiikan ja koneoppimisen projektin vaiheet riippumatta ratkaistavasta ongelmasta. Lisäksi osaat arvioida kriittisesti toteutuksensa ja perustella johtopäätökset.
Ilmoittautumisaika
01.08.2022 - 25.08.2022
Ajoitus
05.09.2022 - 16.10.2022
Opintopistemäärä
4 op
Virtuaaliosuus
4 op
Toteutustapa
Verkko-opetus
Yksikkö
Teknologiayksikkö
Toimipiste
Lutakon kampus
Opetuskielet
- Suomi
Paikat
0 - 30
Koulutus
- Tieto- ja viestintätekniikka (AMK)
Opettaja
- Juha Peltomäki
Tavoitteet
Ymmärrät data-analytiikan ja koneoppimisen käytänteet ja projektin rakenteen ja kulun. Ymmärrät, millä tavalla datapohjainen projekti suunnitellaan, rakennetaan ja toteutetaan. Tunnistat myös datapohjaisten projektien keskeisen terminologian ja yleisimmät käytänteet. Ymmärrät datan visualisoinnin merkityksen. Tiedät opetus- ja testijoukon käsitteet ja yleisimmät tavat niihin jakamiseen. Saat perustiedot käytetyimmistä data-analytiikan ja koneoppimisen työkaluista.
EUR-ACE-osaamiset:
Tieto ja ymmärrys
Tekniikan soveltaminen käytäntöön
Sisältö
- Dataan pohjautuvan projektin rakenne ja toteutus
- Data-analytiikan ja koneoppimisen käytänteet
- Opetus- ja testijoukon käsitteet ja yleisimmät tavat niiden jakamiseen
- Datapohjaisen projektin dokumentointi ja visualisointi
- Esittely data-analytiikka ja koneoppimisen yleisimpiin työkaluihin ja niihin tarvittava käytännön osaaminen
Aika ja paikka
Opintojakso toteutetaan syyslukukaudella 2022.
Oppimateriaali ja suositeltava kirjallisuus
Materiaali harjoitustehtäviä ja opiskeltavia asiasisältöjä varten jaetaan kurssin aikana.
Opetusmenetelmät
Virtuaalinen opiskelu sisältäen harjoitustehtävien tekemisen sekä niihin liittyviin luento- ja esimerkkimateriaaleihin perehtymisen.
Harjoitustehtävät tehdään pääsääntöisesti ryhmätöinä.
Harjoittelu- ja työelämäyhteistyö
Opintojakson sisältö pyritään kytkemään työelämässä esiintyviin ongelmiin.
Tenttien ajankohdat ja uusintamahdollisuudet
Opintojakso arvioidaan palautettujen harjoitustehtävien avulla. Palautukset tulee suorittaa annettuihin aikatauluihin mennessä.
Vaihtoehtoiset suoritustavat
Hyväksilukemisen menettelytavat kuvataan tutkintosäännössä ja opinto-oppaassa. Opintojakson opettaja antaa lisätietoa mahdollisista opintojakson erityiskäytänteistä.
Opiskelijan ajankäyttö ja kuormitus
Yhden opintopisteen työmäärä vastaa 27 tunnin opiskelutyötä. Yhteensä opiskelutyömäärä (4 op) kurssilla on 108 tuntia.
Lisätietoja opiskelijoille
Arviointimenetelmät käydään läpi opintojakson alussa.
Arviointiasteikko
0-5
Arviointikriteerit, tyydyttävä (1-2)
Tyydyttävä 2: Tunnet data-analytiikka ja koneoppimisen projektin eri vaiheet. Osaat suunnitella data-analytiikan ja koneoppimisen projektin vaiheet. Lisäksi osaat pintapuolisesti toteutuksensa ja perustella johtopäätökset.
Välttävä 1: Tunnet data-analytiikka ja koneoppimisen projektin eri vaiheet. Osaat pintapuolisesti suunnitella data-analytiikan ja koneoppimisen projektin vaiheet. Lisäksi osaat arvioida suppeasti toteutuksensa ja tekemänsä johtopäätökset.
Arviointikriteerit, hyvä (3-4)
Kiitettävä 4: Tunnet data-analytiikka ja koneoppimisen projektin eri vaiheet ja osaa systemaattisesti edetä vaihe vaiheelta. Osaat suunnitella data-analytiikan ja koneoppimisen projektin vaiheet riippumatta ratkaistavasta ongelmasta. Lisäksi osaat monipuolisesti arvioida toteutuksensa ja perustella johtopäätökset.
Hyvä 3: Tunnet data-analytiikka ja koneoppimisen projektin eri vaiheet ja osaa edetä vaihe vaiheelta. Osaat suunnitella data-analytiikan ja koneoppimisen projektin vaiheet riippumatta ratkaistavasta ongelmasta. Lisäksi osaat monipuolisesti arvioida toteutuksensa ja perustella johtopäätökset.
Arviointikriteerit, kiitettävä (5)
Erinomainen 5: Tunnet data-analytiikka ja koneoppimisen projektin eri vaiheet ja osaa systemaattisesti edetä vaihe vaiheelta. Osaat suunnitella data-analytiikan ja koneoppimisen projektin vaiheet riippumatta ratkaistavasta ongelmasta. Lisäksi osaat arvioida kriittisesti toteutuksensa ja perustella johtopäätökset.
Ilmoittautumisaika
16.12.2021 - 09.01.2022
Ajoitus
11.04.2022 - 31.05.2022
Opintopistemäärä
4 op
Virtuaaliosuus
4 op
Toteutustapa
Verkko-opetus
Yksikkö
Teknologiayksikkö
Toimipiste
Lutakon kampus
Opetuskielet
- Suomi
Paikat
0 - 30
Koulutus
- Tieto- ja viestintätekniikka (AMK)
Opettaja
- Juha Peltomäki
Ryhmät
-
TTV19SMTieto- ja viestintätekniikka
-
TTV19S1Tieto- ja viestintätekniikka
-
TTV20SMTieto- ja viestintätekniikka
-
TTV19S3Tieto- ja viestintätekniikka
-
TTV19S2Tieto- ja viestintätekniikka
-
TTV19S5Tieto- ja viestintätekniikka
-
ZJA22KTIDA1Avoin AMK, tekniikka, ICT, Data-analytiikka1
Tavoitteet
Ymmärrät data-analytiikan ja koneoppimisen käytänteet ja projektin rakenteen ja kulun. Ymmärrät, millä tavalla datapohjainen projekti suunnitellaan, rakennetaan ja toteutetaan. Tunnistat myös datapohjaisten projektien keskeisen terminologian ja yleisimmät käytänteet. Ymmärrät datan visualisoinnin merkityksen. Tiedät opetus- ja testijoukon käsitteet ja yleisimmät tavat niihin jakamiseen. Saat perustiedot käytetyimmistä data-analytiikan ja koneoppimisen työkaluista.
EUR-ACE-osaamiset:
Tieto ja ymmärrys
Tekniikan soveltaminen käytäntöön
Sisältö
- Dataan pohjautuvan projektin rakenne ja toteutus
- Data-analytiikan ja koneoppimisen käytänteet
- Opetus- ja testijoukon käsitteet ja yleisimmät tavat niiden jakamiseen
- Datapohjaisen projektin dokumentointi ja visualisointi
- Esittely data-analytiikka ja koneoppimisen yleisimpiin työkaluihin ja niihin tarvittava käytännön osaaminen
Arviointiasteikko
0-5
Arviointikriteerit, tyydyttävä (1-2)
Tyydyttävä 2: Tunnet data-analytiikka ja koneoppimisen projektin eri vaiheet. Osaat suunnitella data-analytiikan ja koneoppimisen projektin vaiheet. Lisäksi osaat pintapuolisesti toteutuksensa ja perustella johtopäätökset.
Välttävä 1: Tunnet data-analytiikka ja koneoppimisen projektin eri vaiheet. Osaat pintapuolisesti suunnitella data-analytiikan ja koneoppimisen projektin vaiheet. Lisäksi osaat arvioida suppeasti toteutuksensa ja tekemänsä johtopäätökset.
Arviointikriteerit, hyvä (3-4)
Kiitettävä 4: Tunnet data-analytiikka ja koneoppimisen projektin eri vaiheet ja osaa systemaattisesti edetä vaihe vaiheelta. Osaat suunnitella data-analytiikan ja koneoppimisen projektin vaiheet riippumatta ratkaistavasta ongelmasta. Lisäksi osaat monipuolisesti arvioida toteutuksensa ja perustella johtopäätökset.
Hyvä 3: Tunnet data-analytiikka ja koneoppimisen projektin eri vaiheet ja osaa edetä vaihe vaiheelta. Osaat suunnitella data-analytiikan ja koneoppimisen projektin vaiheet riippumatta ratkaistavasta ongelmasta. Lisäksi osaat monipuolisesti arvioida toteutuksensa ja perustella johtopäätökset.
Arviointikriteerit, kiitettävä (5)
Erinomainen 5: Tunnet data-analytiikka ja koneoppimisen projektin eri vaiheet ja osaa systemaattisesti edetä vaihe vaiheelta. Osaat suunnitella data-analytiikan ja koneoppimisen projektin vaiheet riippumatta ratkaistavasta ongelmasta. Lisäksi osaat arvioida kriittisesti toteutuksensa ja perustella johtopäätökset.