Applied Mathematics: Optimization and Network Models (3 cr)
Code: TTZM0330-3004
General information
- Enrollment
-
01.11.2021 - 09.01.2022
Registration for the implementation has ended.
- Timing
-
07.03.2022 - 29.04.2022
Implementation has ended.
- Number of ECTS credits allocated
- 3 cr
- Local portion
- 0 cr
- Virtual portion
- 3 cr
- Mode of delivery
- Online learning
- Unit
- School of Technology
- Campus
- Lutakko Campus
- Teaching languages
- Finnish
- Seats
- 0 - 35
- Degree programmes
- Bachelor's Degree Programme in Information and Communications Technology
- Teachers
- Harri Varpanen
- Groups
-
TTV19S1Tieto- ja viestintätekniikka
-
TTV19S2Tieto- ja viestintätekniikka
-
TTV19S5Tieto- ja viestintätekniikka
- Course
- TTZM0330
Evaluation scale
Pass/Fail
Objective
The student knows the basic mathematical concepts related to networks as well as knows and understands the network algorithms presented in the course (See Course Contents) that enable to find the exact optimal solution. The student is able to form out of an optimization problem a linear model with solutions. The student understands the general principle of optimization and has acquainted themselves with some non-linear optimization problems.
Content
Competences
Directional and non-directional network
Network cable coloring ?
Problems with scheduling
Welsh-Powell algorithm
Minimal tree
Shortest path
Dijkstra algorithm
Bellman-Ford algorithm
Network and routing
Flownets?
Maximim flow with minimal costs
Ford-Fulkerson algorithm
Linear optimization
Simplex algorithm
Fundamentals of non-linear optimization
Location and time
Zoom / Teams
Materials
Opettaja antaa materiaalit opintojakson alussa / aikana.
Teaching methods
Luennot ja ohjaukset alkuviikosta luokassa, loppuviikosta Zoomissa (samat asiat kuin alkuviikosta, tallennetaan).
Viikoittaiset tehtävät, palautetaan kirjallisesti.
Lopputesti.
Läpäisykriteerit: kaikki tehtävät hyväksytysti palautettu, lopputesti läpäisty.
Python-koodia ja student-palvelinta käytetään havainnollistamaan algoritmeja. Aiempaa python-kokemusta ei tarvita.
Exam schedules
Sovitaan opintojakson alussa.
Student workload
Ohjaukset 30h, itsenäinen työskentely 51h.
Assessment criteria, satisfactory (1)
All learning outcomes will be assessed based on both exercises and final exam.
Pass:
The student shows based on the exam and returned exercises both understanding of basic concepts and algorithms and their ability to apply them into practice. With the items of assessment, the student demonstrates ability to solve a linear optimization problem and is able to identify the constraints of linear method.
In order to pass the course, a minimum of 50 % of the maximum points of items of assessment are required.
Assessment criteria, approved/failed
All learning outcomes will be assessed based on both exercises and final exam.
Pass: The student shows based on the exam and returned exercises both understanding of basic concepts and algorithms and his/her ability to apply them to practice. With the items of assessment, the student demonstrates ability to solve a linear optimization problem and is able to identify the constraints of linear method. In order to pass the course, a minimum of 50 % of the maximum points of items of assessment are required.
Qualifications
-