AI / DA -Projekti (5 op)
Toteutuksen tunnus: TTC8070-3004
Toteutuksen perustiedot
Ajoitus
09.01.2023 - 28.04.2023
Opintopistemäärä
5 op
Toteutustapa
Lähiopetus
Yksikkö
Teknologiayksikkö
Toimipiste
Lutakon kampus
Opetuskielet
- Suomi
Koulutus
- Tieto- ja viestintätekniikka (AMK)
Opettaja
- Juha Peltomäki
Ryhmät
-
ZJA23KTIDA2Avoin amk, Data-analytiikka 2, Verkko
Tavoitteet
Ymmärrät ja hallitset projektin eri vaiheet data-analytiikan ja koneoppimisen projektissa. Osaat valita soveltuvat menetelmät ratkaistavaan ongelmaan ja soveltaa niitä ratkaistavaan ongelmaan. Osaat tulkita saamiaan tuloksia ja tehdä niiden pohjalta johtopäätöksiä.
EUR-ACE-osaamiset:
Tieto ja ymmärrys
Viestintä ja tiimityö
Tekniikan soveltaminen käytäntöön
Sisältö
Ennalta määritettyyn dataan perustuva data-analytiikan ja koneoppimisen projekti Python-ohjelmointiympäristössä, joka sisältää seuraavat projektin vaiheet:
- Datan esikäsittely
- Datan kuvailu, tunnusluvut ja kuvaajat
- Sopivan ennustemallin valinta ja toteutus (vähintään 2 vaihtoehtoista mallia)
- Ennustemallien tarkkuuden arviointi
- Tulosten analysointi
Aika ja paikka
Verkkototeutus (ryhmätyöskentely ja ohjaus verkossa)
Oppimateriaali ja suositeltava kirjallisuus
Data-analytiikan ja tekoälyn erikoistumismoduulin muiden opintojaksojen materiaali on sovellettavissa tässä projektitoteutuksessa.
Opetusmenetelmät
Opiskelijat toteuttavat projektin ryhmätyönä. Ohjausta järjestetään opintojakson aikana verkossa.
Harjoittelu- ja työelämäyhteistyö
Opintojakson sisältö pyritään kytkemään työelämässä esiintyviin ongelmiin.
Opiskelijan ajankäyttö ja kuormitus
Opintopistemäärää vastaava tuntimäärä 135 tuntia (projektin ohjaustilaisuudet, ryhmätyöskentely projektissa)
Lisätietoja opiskelijoille
Projektin osa-alueet arvioidaan koko ryhmän osalta.
Opintojaksossa arvioidaan projektien osa-alueet annetun aikataulun mukaisesti.
Arviointiasteikko
0-5
Arviointikriteerit, tyydyttävä (1-2)
Tyydyttävä 2: Tunnet data-analytiikka ja koneoppimisen projektin eri vaiheet. Osaat valita yleisimmät tekniikat ratkaistavaan ongelmaan ja osaat soveltaa teknistä osaamistaan käytännössä. Lisäksi osaat pintapuolisesti arvioida toteutuksesi ja perustella johtopäätöksesi.
Välttävä 1: Tunnet data-analytiikka ja koneoppimisen projektin eri vaiheet. Osaat yleisimmät tekniikat ja osaat soveltaa yleisimpiä tekniikoita. Lisäksi osaat arvioida suppeasti toteutuksesi ja perustella johtopäätöksesi.
Arviointikriteerit, hyvä (3-4)
Kiitettävä 4: Tunnet data-analytiikka ja koneoppimisen projektin eri vaiheet ja osaat systemaattisesti edetä vaihe vaiheelta. Osaat valita oikeat tekniikat riippumatta ratkaistavasta ongelmasta ja osaat soveltaa teknistä osaamistaan käytännössä. Lisäksi osaat monipuolisesti arvioida toteutuksesi ja perustella johtopäätökset.
Hyvä 3: Tunnet data-analytiikka ja koneoppimisen projektin eri vaiheet ja osaat edetä vaihe vaiheelta. Osaat valita yleisimmät tekniikat ratkaistavaan ongelmaan ja osaat soveltaa teknistä osaamistaan käytännössä. Lisäksi osaat monipuolisesti arvioida toteutuksesi ja perustella johtopäätökset.
Arviointikriteerit, kiitettävä (5)
Erinomainen 5: Tunnet data-analytiikka ja koneoppimisen projektin eri vaiheet ja osaat systemaattisesti edetä vaihe vaiheelta. Osaat valita oikeat tekniikat riippumatta ratkaistavasta ongelmasta ja osaat soveltaa teknistä osaamistaan käytännössä. Lisäksi osaat arvioida kriittisesti toteutuksesi ja perustella johtopäätökset.
Esitietovaatimukset
Tietotekniikan peruskäyttätaidot, ohjelmoinnin perusosaaminen, Python-ohjelmointikielen tunteminen ja osaaminen.
Lisäksi Laskennalliset algoritmit, Data analytiikan ja koneoppimisen käytänteet, Datan esikäsittely, Datan analysointi ja visualisointi, Koneoppiminen, Syväoppiminen opintojaksot.