Skip to main content

AI / DA -Project (5 cr)

Code: TTC8070-3004

General information


Timing
09.01.2023 - 28.04.2023
Implementation has ended.
Number of ECTS credits allocated
5 cr
Local portion
5 cr
Mode of delivery
Face-to-face
Unit
School of Technology
Campus
Lutakko Campus
Teaching languages
Finnish
Degree programmes
Bachelor's Degree Programme in Information and Communications Technology
Teachers
Juha Peltomäki
Groups
ZJA23KTIDA2
Avoin amk, Data-analytiikka 2, Verkko
Course
TTC8070
No reservations found for realization TTC8070-3004!

Evaluation scale

0-5

Objective

You understand and master the various phases of Data Analytics and Machine learning project. You are able to select the applicable methods for the problem to be solved and apply them to the problem to be solved. You are able to interpret the obtained results and draw conclusions based on them.

EUR-ACE Competences:
Knowledge and Understanding
Communication and team-working
Engineering Practice

Content

Analysis of pre-selected data in Python programming environment, includes all stages of data analysis and machine learning project:
- Data preprocessing
- Data description and descriptors
- Selection of a suitable predictive model and its implementation (at least two alternative models)
- Assessment of the accuracy of the predictive models
- Analysis of results

Location and time

Verkkototeutus (ryhmätyöskentely ja ohjaus verkossa)

Materials

Data-analytiikan ja tekoälyn erikoistumismoduulin muiden opintojaksojen materiaali on sovellettavissa tässä projektitoteutuksessa.

Teaching methods

Opiskelijat toteuttavat projektin ryhmätyönä. Ohjausta järjestetään opintojakson aikana verkossa.

Employer connections

Opintojakson sisältö pyritään kytkemään työelämässä esiintyviin ongelmiin.

Student workload

Opintopistemäärää vastaava tuntimäärä 135 tuntia (projektin ohjaustilaisuudet, ryhmätyöskentely projektissa)

Assessment criteria, satisfactory (1)

Satisfactory 2: You know the various phases of a data analytics and machine learning project. You are able to select the most common techniques for the problem to be solved and are able to apply your technical know-how to practice. In addition, you are able to assess your implementation and validate the conclusions.

Sufficient 1: You know the various phases of a data analytics and machine learning project. You know the most common techniques and are able to apply them to practice. Additionally, you are able to assess briefly your implementation and validate the conclusions.

Assessment criteria, good (3)

Very good 4: You know the various phases of a data analytics and machine learning project and are able to proceed systematically step by step. You are able to select the correct techniques regardless of the problem to be solved and are able to apply your technical know-how to practice. In addition, you are able to assess your implementation and validate the conclusions.

Good 3: You know the various phases of a data analytics and machine learning project and are able to proceed step by step. You are able to select the most common techniques for the problem to be solved and are able to apply your technical know-how to practice. Additionally, you are able to assess your implementation and validate the conclusions.

Assessment criteria, excellent (5)

Excellent 5: You know the various phases of a data analytics and machine learning project and are able to proceed systematically step by step. You are able to select the correct techniques regardless of the problem to be solved and are able to apply your technical know-how to practice. Additionally, you are able to critically assess your implementation and validate the conclusions.

Qualifications

Basics in computing and programming, knowledge and know-how of Python programming language.

Additionally, courses in Computational algorithms, Data analytics and Machine Learning Practice, Data Preprocessing, Data Analysis and Visualization, Machine Learning and Deep Learning.

Further information

Projektin osa-alueet arvioidaan koko ryhmän osalta.
Opintojaksossa arvioidaan projektien osa-alueet annetun aikataulun mukaisesti.

Go back to top of page