Siirry suoraan sisältöön

Math3 Derivative and Integral (3 cr)

Code: TZLM3300-3068

General information


Enrollment

01.08.2023 - 24.08.2023

Timing

28.08.2023 - 19.12.2023

Number of ECTS credits allocated

3 op

Mode of delivery

Face-to-face

Unit

School of Technology

Campus

Main Campus

Teaching languages

  • English

Seats

0 - 30

Degree programmes

  • Bachelor's Degree Programme in Purchasing and Logistics Engineering

Teachers

  • Kalle Niemi

Groups

  • TLP22S1
    Bachelor's Degree Programme in Purchasing and Logistics Engineering
  • TLP23VS
    Bachelor's Degree Programme in Purchasing and Logistics Engineering (AMK) vaihto-opiskelu/Exchange studies
  • 23.11.2023 11:30 - 13:00, Math3 Derivative and Integral TZLM3300-3068
  • 24.11.2023 09:00 - 10:30, Math3 Derivative and Integral TZLM3300-3068
  • 30.11.2023 11:30 - 13:00, Math3 Derivative and Integral TZLM3300-3068
  • 01.12.2023 09:00 - 10:30, Math3 Derivative and Integral TZLM3300-3068
  • 07.12.2023 11:30 - 13:00, Math3 Derivative and Integral TZLM3300-3068
  • 08.12.2023 09:00 - 10:30, Math3 Derivative and Integral TZLM3300-3068
  • 14.12.2023 11:30 - 13:00, Math3 Derivative and Integral TZLM3300-3068
  • 15.12.2023 08:00 - 10:30, Exam for Math 1 and Math 3
  • 19.12.2023 08:00 - 10:30, Exam for Math1 and Math 3

Objective

The object of the course
During this course you will learn the concepts needed to study continuous change and dynamic phenomena. With differential calculus you can study instantaneous rates of change and the slopes of curves. With integral calculus you can study accumulation of quantities and areas bounded by curves. During this course you learn how to use these concepts in applications.

Course competences

EUR-ACE: Knowledge and understanding 
You have the knowledge and understanding of mathematics and other basic sciences underlying your engineering specialisation, at a level necessary to achieve the other programme learning outcomes.

The learning objectives of the course
After completing this course you know the meaning of derivative and integral as tools for modeling dynamic phenomena. You know how to differentiate and integrate. You know how to use the derivative and integral in applications.

Content

In this course, you will learn to master the tools needed to study phenomena of change, such as the concepts of derivatives and integrals. You will understand the meaning of these concepts and be able to apply them in practice. You will learn to derive and integrate and solve applied problems using these methods. This course will give you a strong foundation in applying mathematical methods to engineering problems.

The derivative and its different interpretations. Rules of differentiation. Using differentiation in optimization problems and other applications involving the derivative such as estimation of error. The definite integral. Rules of integration. The applications of the integral. Using technology in calculations.

Location and time

Course is implemented between 30.10. - 17.12.2023.

Oppimateriaali ja suositeltava kirjallisuus

Videos in the learning environment, text files, automatic tests, booklet tasks.

Teaching methods

Lectures face-to-face, guided exercises, booklet tasks, independent work, automatic tests, exam.

Exam schedules

Läpäisykoe Examissa viikolta 48 lähtien, arvosanakoe viikolla 17, uusintakoe 1 viikolla 19 ja uusintakoe 2 viikolla 21.

Student workload

Lectures, guided exercises and exam 30 h
Independent work and automatic tests 51 h

Further information

Jatkuva palaute: automaattitestit ja palautettavat tehtävät
Läpäisykoe
Arvosanakoe
Bonustehtävä

Avoin AMK 5

Evaluation scale

0-5

Arviointikriteerit, tyydyttävä (1-2)

Sufficient 1
You know the concept of the derivative as the rate of change and as the slope of the tangent. Yo understand how to apply the derivative in optimization problems. You can differentiate and integrate polynomials without technology. You know the concept of the integral as accumulation of quantities and as area under a curve. You know the relation between integral and derivative.

Satisfactory 2
You have achieved the desired goals (look at the criteria of grade 1). You know many of the concepts and methods and how to apply them in familiar situations but your reasoning is sometimes deficient or you make mistakes in calculations.

Arviointikriteerit, hyvä (3-4)

Good 3
You have achieved the desired goals(look at the criteria of grade 1). You know most of the concepts and methods and how to apply them in familiar situations showing often the ability to reason completely and calculate flawlessly

Very good 4
You have achieved the desired goals (look at the criteria of grade 1). You know most of the concepts and methods and how to apply them in new situations showing in most cases the ability to reason completely and calculate flawlessly.

Assessment criteria, excellent (5)

You have achieved the desired goals (look at the criteria of grade 1). You know all the concepts and methods and how to apply them in new situations showing always the ability to combine things, reason completely and calculate flawlessly.

Qualifications

You know the concept of a limit value. You can work with polynomial, exponential, logarithmic and trigonometric functions.