Siirry suoraan sisältöön

Syväoppiminen (5 op)

Toteutuksen tunnus: TTC8060-3007

Toteutuksen perustiedot


Ilmoittautumisaika

01.08.2023 - 24.08.2023

Ajoitus

09.10.2023 - 03.12.2023

Opintopistemäärä

5 op

Virtuaaliosuus

5 op

Toteutustapa

Verkko-opetus

Yksikkö

Teknologiayksikkö

Opetuskielet

  • Suomi

Paikat

0 - 30

Koulutus

  • Tieto- ja viestintätekniikka (AMK)

Opettaja

  • Juha Peltomäki

Ryhmät

  • TTV21S3
    Tieto- ja viestintätekniikka (AMK)
  • TTV21S5
    Tieto- ja viestintätekniikka (AMK)
  • TTV21SM
    Tieto- ja viestintätekniikka (AMK)
  • TTV21S2
    Tieto- ja viestintätekniikka (AMK)
  • TTV21S1
    Tieto- ja viestintätekniikka (AMK)
  • ZJA23STIDA2
    Avoin amk, Data-analytiikka 2, Verkko

Tavoitteet

Ymmärrät syväoppimisen merkityksen digitalisoituvassa toimintaympäristössä. Tiedät yleisimmät syväoppimisen menetelmät, osaat soveltaa niitä käytännössä olemassa olevaan dataan sekä tulkita menetelmien tulokset.

EUR-ACE-osaamiset:
Tieto ja ymmärrys
Tekniikan soveltaminen käytäntöön
Tutkimukset ja tiedonhaku

Sisältö

- Erilaiset neuroverkot ja niiden arkkitehtuurit ja käyttötarkoitukset (CNN, RNN, LSTM, Autoencoder, jne.)
- Avoimen lähdekoodin työkaluilla työskentely
- Siirretty oppiminen
- Ennustaminen
- Konenäkö
- NLP

Aika ja paikka

Opintojakso toteutetaan syyslukukaudella 2023.

Oppimateriaali ja suositeltava kirjallisuus

Materiaali harjoitustehtäviä ja opiskeltavia asiasisältöjä varten jaetaan kurssin aikana. Opintojaksolla hyödynnetään Python 3.9+-ympäristöä, Git-versiohallintaa, scikit-learn, TensorFlow 2, Keras sekä muita visualisointi- ja syväoppimiskirjastoja.

Opetusmenetelmät

Virtuaalinen opiskelu sisältäen harjoitustehtävien tekemisen sekä niihin liittyviin luento- ja esimerkkimateriaaleihin perehtymisen.

Harjoittelu- ja työelämäyhteistyö

Opintojakson sisältö pyritään kytkemään työelämässä esiintyviin ongelmiin.

Vaihtoehtoiset suoritustavat

Hyväksilukemisen menettelytavat kuvataan tutkintosäännössä ja opinto-oppaassa. Opintojakson opettaja antaa lisätietoa mahdollisista opintojakson erityiskäytänteistä.

Opiskelijan ajankäyttö ja kuormitus

Yhden opintopisteen työmäärä vastaa 27 tunnin opiskelutyötä. Yhteensä opiskelutyömäärä (5 op) kurssilla on 135 tuntia.

Sisällön jaksotus

Oppimateriaalit julkaistaan kurssin alkaessa ja niitä täydennetään tarvittaessa kurssin aikana.
Myös tarkemmat opintojaksolla käytettävien ympäristöjen asennusohjeet jaetaan alkuvaiheessa.

Lisätietoja opiskelijoille

Opintojakso arvioidaan palautettujen harjoitustehtävien avulla.
Arviointimenetelmät käydään läpi opintojakson alussa.

Arviointiasteikko

0-5

Arviointikriteerit, tyydyttävä (1-2)

Tyydyttävä 2: Tiedät syväoppimisen yleisimmin käytetyt tekniikat ja erilaisille ongelmille. Osaat valita syväoppimisen tekniikat ja soveltaa teknistä osaamistaan käytännössä. Lisäksi osaat arvioida pintapuolisesti toteutuksensa.

Välttävä 1: Tiedät syväoppimisen yleisimmin käytetyt tekniikat. Osaat soveltaa yleisimpiä syväoppimisen tekniikoita. Lisäksi osaat arvioida suppeasti toteutuksensa.

Arviointikriteerit, hyvä (3-4)

Kiitettevä 4: Tunnistat syväoppimisen tuomat hyödyt digitalisaation aikakautena. Osaat syväoppimisen yleisimmin käytetyt tekniikat ja osaa monipuolisesti perustella käytettyjen tekniikoiden käytön erilaisissa tehtävissä. Osaat soveltaa teknistä osaamistaan käytännössä ja arvioida kriittisesti toteutuksensa ja perustella sen kehittämistä.

Hyvä 3: Tiedostat syväoppimisen tuomat hyödyt digitalisaation aikakautena. Osaat syväoppimisen yleisimmin käytetyt tekniikat erilaisille ongelmille. Osaat soveltaa teknistä osaamistaan käytännössä arvioida toteutuksensa ja perustella sen kehittämistä.

Arviointikriteerit, kiitettävä (5)

Erinomainen 5: Tunnistat syväoppmisen tuomat hyödyt digitalisaation aikakautena. Osaat syväoppimisen yleisimmin käytetyt tekniikat ja osaa kriittisesti perustella käytettyjen tekniikoiden käytön erilaisissa tehtävissä. Osaat soveltaa teknistä osaamistaan käytännössä ja arvioida kriittisesti toteutuksensa ja perustella sen kehittämistä.

Esitietovaatimukset

Tietotekniikan peruskäyttätaidot, ohjelmoinnin perusosaaminen, Python-ohjelmointikielen tunteminen ja osaaminen.
Lisäksi Laskennalliset algoritmit ja Datan esikäsittely opintojaksot.