Siirry suoraan sisältöön

AI / DA -Projekti (5 op)

Toteutuksen tunnus: TTC8070-3005

Toteutuksen perustiedot


Ilmoittautumisaika

01.08.2023 - 24.08.2023

Ajoitus

09.10.2023 - 18.12.2023

Opintopistemäärä

5 op

Virtuaaliosuus

5 op

Toteutustapa

Verkko-opetus

Yksikkö

Teknologiayksikkö

Opetuskielet

  • Suomi

Paikat

0 - 30

Koulutus

  • Tieto- ja viestintätekniikka (AMK)

Opettaja

  • Juha Peltomäki
  • Antti Häkkinen

Ryhmät

  • TTV21S3
    Tieto- ja viestintätekniikka (AMK)
  • TTV21S5
    Tieto- ja viestintätekniikka (AMK)
  • TTV21SM
    Tieto- ja viestintätekniikka (AMK)
  • TTV21S2
    Tieto- ja viestintätekniikka (AMK)
  • TTV21S1
    Tieto- ja viestintätekniikka (AMK)
  • ZJA23STIDA2
    Avoin amk, Data-analytiikka 2, Verkko
  • 28.11.2023 16:00 - 18:00, AI / DA -Projekti TTC8070-3005
  • 12.12.2023 16:00 - 18:00, AI / DA -Projekti TTC8070-3005

Tavoitteet

Ymmärrät ja hallitset projektin eri vaiheet data-analytiikan ja koneoppimisen projektissa. Osaat valita soveltuvat menetelmät ratkaistavaan ongelmaan ja soveltaa niitä ratkaistavaan ongelmaan. Osaat tulkita saamiaan tuloksia ja tehdä niiden pohjalta johtopäätöksiä.

EUR-ACE-osaamiset:
Tieto ja ymmärrys
Viestintä ja tiimityö
Tekniikan soveltaminen käytäntöön

Sisältö

Ennalta määritettyyn dataan perustuva data-analytiikan ja koneoppimisen projekti Python-ohjelmointiympäristössä, joka sisältää seuraavat projektin vaiheet:
- Datan esikäsittely
- Datan kuvailu, tunnusluvut ja kuvaajat
- Sopivan ennustemallin valinta ja toteutus (vähintään 2 vaihtoehtoista mallia)
- Ennustemallien tarkkuuden arviointi
- Tulosten analysointi

Aika ja paikka

Verkkototeutus (ryhmätyöskentely ja ohjaus verkossa)

Oppimateriaali ja suositeltava kirjallisuus

Data-analytiikan ja tekoälyn erikoistumismoduulin muiden opintojaksojen materiaali on sovellettavissa tässä projektitoteutuksessa.

Opetusmenetelmät

Opiskelijat toteuttavat projektin ryhmätyönä. Ohjausta järjestetään opintojakson aikana verkossa.

Harjoittelu- ja työelämäyhteistyö

Opintojakson sisältö pyritään kytkemään työelämässä esiintyviin ongelmiin.

Vaihtoehtoiset suoritustavat

Hyväksilukemisen menettelytavat kuvataan tutkintosäännössä ja opinto-oppaassa. Opintojakson opettaja antaa lisätietoa mahdollisista opintojakson erityiskäytänteistä.

Opiskelijan ajankäyttö ja kuormitus

Opintopistemäärä vastaa 135 tuntia (5 op.) opiskelijatyötä (projektin ohjaustilaisuudet, ryhmätyöskentely projektissa).

Lisätietoja opiskelijoille

Projektin osavaiheet arvioidaan koko ryhmän osalta.
Opintojaksossa arvioidaan projektien osa-alueet annetun aikataulun mukaisesti.

Arviointiasteikko

0-5

Arviointikriteerit, tyydyttävä (1-2)

Tyydyttävä 2: Tunnet data-analytiikka ja koneoppimisen projektin eri vaiheet. Osaat valita yleisimmät tekniikat ratkaistavaan ongelmaan ja osaat soveltaa teknistä osaamistaan käytännössä. Lisäksi osaat pintapuolisesti arvioida toteutuksesi ja perustella johtopäätöksesi.

Välttävä 1: Tunnet data-analytiikka ja koneoppimisen projektin eri vaiheet. Osaat yleisimmät tekniikat ja osaat soveltaa yleisimpiä tekniikoita. Lisäksi osaat arvioida suppeasti toteutuksesi ja perustella johtopäätöksesi.

Arviointikriteerit, hyvä (3-4)

Kiitettävä 4: Tunnet data-analytiikka ja koneoppimisen projektin eri vaiheet ja osaat systemaattisesti edetä vaihe vaiheelta. Osaat valita oikeat tekniikat riippumatta ratkaistavasta ongelmasta ja osaat soveltaa teknistä osaamistaan käytännössä. Lisäksi osaat monipuolisesti arvioida toteutuksesi ja perustella johtopäätökset.

Hyvä 3: Tunnet data-analytiikka ja koneoppimisen projektin eri vaiheet ja osaat edetä vaihe vaiheelta. Osaat valita yleisimmät tekniikat ratkaistavaan ongelmaan ja osaat soveltaa teknistä osaamistaan käytännössä. Lisäksi osaat monipuolisesti arvioida toteutuksesi ja perustella johtopäätökset.

Arviointikriteerit, kiitettävä (5)

Erinomainen 5: Tunnet data-analytiikka ja koneoppimisen projektin eri vaiheet ja osaat systemaattisesti edetä vaihe vaiheelta. Osaat valita oikeat tekniikat riippumatta ratkaistavasta ongelmasta ja osaat soveltaa teknistä osaamistaan käytännössä. Lisäksi osaat arvioida kriittisesti toteutuksesi ja perustella johtopäätökset.

Esitietovaatimukset

Tietotekniikan peruskäyttätaidot, ohjelmoinnin perusosaaminen, Python-ohjelmointikielen tunteminen ja osaaminen.

Lisäksi Laskennalliset algoritmit, Data analytiikan ja koneoppimisen käytänteet, Datan esikäsittely, Datan analysointi ja visualisointi, Koneoppiminen, Syväoppiminen opintojaksot.