Skip to main content

Differential equations in construction engineering (3 cr)

Code: TZLM4350-3005

General information


Enrollment
01.08.2024 - 22.08.2024
Registration for the implementation has ended.
Timing
21.10.2024 - 28.02.2025
Implementation has ended.
Number of ECTS credits allocated
3 cr
Local portion
3 cr
Mode of delivery
Face-to-face
Unit
School of Technology
Campus
Main Campus
Teaching languages
Finnish
Seats
20 - 63
Degree programmes
Bachelor's Degree Programme in Construction and Civil Engineering
Teachers
Antti Kosonen
Scheduling groups
TRY23SA (Capacity: 35 . Open UAS : 0.)
TRY23SB (Capacity: 35 . Open UAS : 0.)
Groups
TRY23S1
Rakennus- ja yhdyskuntatekniikka (AMK)
Small groups
TRY23SA
TRY23SB
Course
TZLM4350

Realization has 36 reservations. Total duration of reservations is 60 h 45 min.

Time Topic Location
Tue 22.10.2024 time 09:00 - 10:30
(1 h 30 min)
Differentiaaliyhtälöt rakennustekniikassa TZLM4350-3005
R35F211 CAE-laboratorio
Tue 22.10.2024 time 14:15 - 15:45
(1 h 30 min)
Differentiaaliyhtälöt rakennustekniikassa TZLM4350-3005
R35BP06 IT-tila
Thu 24.10.2024 time 09:00 - 10:30
(1 h 30 min)
Differentiaaliyhtälöt rakennustekniikassa TZLM4350-3005
R35F211 CAE-laboratorio
Thu 24.10.2024 time 13:15 - 14:45
(1 h 30 min)
Differentiaaliyhtälöt rakennustekniikassa TZLM4350-3005
R35F211 CAE-laboratorio
Tue 29.10.2024 time 09:00 - 10:30
(1 h 30 min)
Differentiaaliyhtälöt rakennustekniikassa TZLM4350-3005
R35F211 CAE-laboratorio
Tue 29.10.2024 time 14:15 - 15:45
(1 h 30 min)
Differentiaaliyhtälöt rakennustekniikassa TZLM4350-3005
R35BP06 IT-tila
Thu 31.10.2024 time 09:00 - 10:30
(1 h 30 min)
Differentiaaliyhtälöt rakennustekniikassa TZLM4350-3005
R35F211 CAE-laboratorio
Thu 31.10.2024 time 13:15 - 14:45
(1 h 30 min)
Differentiaaliyhtälöt rakennustekniikassa TZLM4350-3005
R35F211 CAE-laboratorio
Tue 05.11.2024 time 09:00 - 10:30
(1 h 30 min)
Differentiaaliyhtälöt rakennustekniikassa TZLM4350-3005
R35F211 CAE-laboratorio
Tue 05.11.2024 time 14:15 - 15:45
(1 h 30 min)
Differentiaaliyhtälöt rakennustekniikassa TZLM4350-3005
R35BP06 IT-tila
Thu 07.11.2024 time 09:00 - 10:30
(1 h 30 min)
Differentiaaliyhtälöt rakennustekniikassa TZLM4350-3005
R35F211 CAE-laboratorio
Thu 07.11.2024 time 13:15 - 14:45
(1 h 30 min)
Differentiaaliyhtälöt rakennustekniikassa TZLM4350-3005
R35F211 CAE-laboratorio
Tue 12.11.2024 time 09:00 - 10:30
(1 h 30 min)
Differentiaaliyhtälöt rakennustekniikassa TZLM4350-3005
R35F211 CAE-laboratorio
Tue 12.11.2024 time 14:15 - 15:45
(1 h 30 min)
Differentiaaliyhtälöt rakennustekniikassa TZLM4350-3005
R35B115 IT-tila
Thu 14.11.2024 time 09:00 - 10:30
(1 h 30 min)
Differentiaaliyhtälöt rakennustekniikassa TZLM4350-3005
R35F211 CAE-laboratorio
Thu 14.11.2024 time 13:15 - 14:45
(1 h 30 min)
Differentiaaliyhtälöt rakennustekniikassa TZLM4350-3005
R35F211 CAE-laboratorio
Tue 19.11.2024 time 09:00 - 10:30
(1 h 30 min)
Differentiaaliyhtälöt rakennustekniikassa TZLM4350-3005
R35F211 CAE-laboratorio
Tue 19.11.2024 time 14:15 - 15:45
(1 h 30 min)
Differentiaaliyhtälöt rakennustekniikassa TZLM4350-3005
R35BP06 IT-tila
Thu 21.11.2024 time 09:00 - 10:30
(1 h 30 min)
Differentiaaliyhtälöt rakennustekniikassa TZLM4350-3005
R35F211 CAE-laboratorio
Thu 21.11.2024 time 13:15 - 14:45
(1 h 30 min)
Differentiaaliyhtälöt rakennustekniikassa TZLM4350-3005
R35F211 CAE-laboratorio
Tue 26.11.2024 time 09:00 - 10:30
(1 h 30 min)
Differentiaaliyhtälöt rakennustekniikassa TZLM4350-3005
R35F211 CAE-laboratorio
Tue 26.11.2024 time 14:15 - 15:45
(1 h 30 min)
Differentiaaliyhtälöt rakennustekniikassa TZLM4350-3005
R35BP06 IT-tila
Wed 27.11.2024 time 11:30 - 13:00
(1 h 30 min)
Differentiaaliyhtälöt rakennustekniikassa TZLM4350-3005
R35BP06 IT-tila
Thu 28.11.2024 time 09:00 - 10:30
(1 h 30 min)
Differentiaaliyhtälöt rakennustekniikassa TZLM4350-3005
R35F211 CAE-laboratorio
Tue 03.12.2024 time 09:00 - 10:30
(1 h 30 min)
Differentiaaliyhtälöt rakennustekniikassa TZLM4350-3005
R35F211 CAE-laboratorio
Tue 03.12.2024 time 14:15 - 15:45
(1 h 30 min)
Differentiaaliyhtälöt rakennustekniikassa TZLM4350-3005
R35BP06 IT-tila
Thu 05.12.2024 time 09:00 - 10:30
(1 h 30 min)
Differentiaaliyhtälöt rakennustekniikassa TZLM4350-3005
R35F211 CAE-laboratorio
Thu 05.12.2024 time 13:15 - 14:45
(1 h 30 min)
Differentiaaliyhtälöt rakennustekniikassa TZLM4350-3005
R35F211 CAE-laboratorio
Tue 10.12.2024 time 09:00 - 11:15
(2 h 15 min)
Differentiaaliyhtälöt rakennustekniikassa TZLM4350-3005
R35F211 CAE-laboratorio
Tue 10.12.2024 time 14:15 - 15:45
(1 h 30 min)
Differentiaaliyhtälöt rakennustekniikassa TZLM4350-3005
R35BP06 IT-tila
Thu 12.12.2024 time 08:00 - 10:30
(2 h 30 min)
Differentiaaliyhtälöt rakennustekniikassa TZLM4350-3005
R35F211 CAE-laboratorio
Thu 12.12.2024 time 13:15 - 16:45
(3 h 30 min)
Differentiaaliyhtälöt rakennustekniikassa TZLM4350-3005
R35BP06 IT-tila
Mon 13.01.2025 time 08:00 - 10:30
(2 h 30 min)
Uusintakoe / Resit
R35B115 IT-tila
Fri 17.01.2025 time 11:30 - 14:00
(2 h 30 min)
Mat1 Yhtälöt TZLM1300-3099, Differentiaaliyhtälöt rakennustekniikassa TZLM4350-3005, Talousmatematiikka TZLM8300-3016, Business Mathematics TZLM8300-3017, Talousmatematiikka TZLM8300-3019/ Uusintakoe
R35B115 IT-tila
Mon 03.02.2025 time 08:00 - 10:30
(2 h 30 min)
Uusintakoe / Resit
R35B115 IT-tila
Mon 17.02.2025 time 13:15 - 14:45
(1 h 30 min)
Differentiaaliyhtälöt rakennustekniikassa - Kolmas uusinta
R35F133 IT-laboratorio
Changes to reservations may be possible.

Evaluation scale

0-5

Content scheduling

A more detailed schedule will be presented at the beginning of the course, but the content will be arranged more or less as follows:
- Revision of derivative and integral
- Integration of piecewise defined functions
- Revision of statics and some mechanics of materials
- Shear stress and bending moment in beams as functions of place
- Euler-Bernoulli differential equation and it's solution with different initial conditions
- Buckling of columns

Objective

Purpose
After the course you will understand how differential equations are used in civil engineering to calculate deflections in beams.

Competencies
Knowledge and understanding of the differential equations at a level necessary to achieve the other programme outcomes.

Learning outcome
You know what differential equations are. You can solve a differential equation of first order using appropriate tools. You understand the role of initial and boundary conditions. You can solve problems related to construction technology.

Content

Using local extremas in calculating deflections in beams. Concept of differential equations and verifying the results and initial and boundary conditions. Solving a differential equation by integrating. Defining the equation for a load and defining the initial and boundary conditions according to the underpinning. Calculating the shear force, the bending moment, the deflection angle and the deflection and determining and analyzing their graphs.

Location and time

The course takes place 21.10.2024 - 15.12.2024 at the main campus (Rajakatu)

Materials

Learning material written by course teacher.

Some good books about the topic that are available at JAMK library in English:
- Beer, F. P. k., Johnston, E. R., DeWolf, J. T. & Mazurek, D. F. 2015. Mechanics of materials. Seventh edition in SI units. New York: McGraw-Hill Education.
- Bedford, A. & Liechti, K. M. 2020. Mechanics of materials. Second Edition. Cham: Springer International Publishing.

Teaching methods

Face-to-face learning. Lesson attendance is mandatory.

It is necessary to actively calculate course exercises to achieve learning goals.

Employer connections

-

Exam schedules

Final exam in the week starting 9th December 2024
1st resit in the week starting 13th January 2025
2nd resit in the week starting 3rd February 2025

International connections

-

Completion alternatives

No alternative implementations.

Student workload

3op * 27 h/op = 81 h, of which approximately 20 h are reserved for face-to-face learning and the final exam.

Assessment criteria, satisfactory (1)

1: You know the concept of differential equation. You understand how to use differential equations in calculating the deflections in a beam. You can verify the result and the initial and boundary conditions. You can solve the deflection of a beam by a model.

2: You have achieved the desired goals (see the criteria in grade 1). You can solve the deflection of a beam without a model, but your reasoning is sometimes deficient or you make mistakes in calculations.

Assessment criteria, good (3)

3: You have achieved the desired goals (see the criteria in grade 1). You know most of the concepts and methods and how to apply them in familiar situations showing often the ability to reason completely and calculate flawlessly.

4: You have achieved the desired goals (see the criteria in grade 1). You know most of the concepts and methods and how to apply them in new situations showing in most cases the ability to reason completely and calculate flawlessly.

Assessment criteria, excellent (5)

5: You have achieved the desired goals (see the criteria in grade 1). You know all the concepts and methods and how to apply them in new situations showing always the ability to combine things, reason completely and calculate flawlessly.

Qualifications

You understand concept of derivation and you can use derivatives in optimization. You understand concept of integrals. You can take the derivatives and integrals of functions by appropriate tools.

Further information

Course assessment is based on final exam and exercises.

If a student enrolled in the course does not show activity within three weeks of the start of the course, the enrollment will be rejected.

Go back to top of page