Math3 Derivative and Integral (3 cr)
Code: TZLM3300-3094
General information
- Enrollment
-
18.11.2024 - 09.01.2025
Registration for the implementation has ended.
- Timing
-
10.02.2025 - 30.04.2025
Implementation is running.
- Number of ECTS credits allocated
- 3 cr
- Local portion
- 3 cr
- Mode of delivery
- Face-to-face
- Unit
- School of Technology
- Campus
- Main Campus
- Teaching languages
- Finnish
- Seats
- 20 - 79
- Degree programmes
- Bachelor's Degree Programme in Mechanical Engineering
- Teachers
- Anne Rantakaulio
- Groups
-
TKN24SMKonetekniikka (AMK)
-
TKN24SAKonetekniikka (AMK)
-
TKN24SBKonetekniikka (AMK)
-
ZJATKN24SMAvoin amk, Konetekniikka, Monimuoto
-
ZJATKN24S1Avoin amk, Konetekniikka, Päivä
- Course
- TZLM3300
Realization has 28 reservations. Total duration of reservations is 45 h 30 min.
Time | Topic | Location |
---|---|---|
Mon 10.02.2025 time 09:00 - 10:30 (1 h 30 min) |
Mat3 Derivaatta ja integraali TZLM3300-3094 |
R35G206
Oppimistila
|
Tue 11.02.2025 time 09:00 - 10:30 (1 h 30 min) |
Mat3 Derivaatta ja integraali TZLM3300-3094 |
R35G206
Oppimistila
|
Tue 11.02.2025 time 17:30 - 19:00 (1 h 30 min) |
Mat3 Derivaatta ja integraali TZLM3300-3094/ Verkko-opetus |
https://jamk.zoom.us/j/67079201915
|
Mon 17.02.2025 time 09:00 - 10:30 (1 h 30 min) |
Mat3 Derivaatta ja integraali TZLM3300-3094 |
Zoom
|
Tue 18.02.2025 time 09:00 - 10:30 (1 h 30 min) |
Mat3 Derivaatta ja integraali TZLM3300-3094 |
Zoom
|
Thu 20.02.2025 time 17:30 - 19:00 (1 h 30 min) |
Mat3 Derivaatta ja integraali TZLM3300-3094/ Verkko-opetus |
https://jamk.zoom.us/j/67079201915
|
Mon 03.03.2025 time 09:00 - 10:30 (1 h 30 min) |
Mat3 Derivaatta ja integraali TZLM3300-3094 |
R35G206
Oppimistila
|
Tue 04.03.2025 time 09:00 - 10:30 (1 h 30 min) |
Mat3 Derivaatta ja integraali TZLM3300-3094 |
R35G206
Oppimistila
|
Thu 06.03.2025 time 17:30 - 19:00 (1 h 30 min) |
Mat3 Derivaatta ja integraali TZLM3300-3094/ Verkko-opetus |
https://jamk.zoom.us/j/67079201915
|
Mon 10.03.2025 time 09:00 - 10:30 (1 h 30 min) |
Mat3 Derivaatta ja integraali TZLM3300-3094 |
R35G206
Oppimistila
|
Tue 11.03.2025 time 09:00 - 10:30 (1 h 30 min) |
Mat3 Derivaatta ja integraali TZLM3300-3094 |
R35G206
Oppimistila
|
Mon 17.03.2025 time 09:00 - 10:30 (1 h 30 min) |
Mat3 Derivaatta ja integraali TZLM3300-3094 |
R35BP14
Oppimistila
|
Tue 18.03.2025 time 09:00 - 10:30 (1 h 30 min) |
Mat3 Derivaatta ja integraali TZLM3300-3094 |
R35F413
Oppimistila (aik)
|
Thu 20.03.2025 time 17:30 - 19:00 (1 h 30 min) |
Mat3 Derivaatta ja integraali TZLM3300-3094/ Verkko-opetus |
https://jamk.zoom.us/j/67079201915
|
Mon 24.03.2025 time 09:00 - 10:30 (1 h 30 min) |
Mat3 Derivaatta ja integraali TZLM3300-3094 |
R35G206
Oppimistila
|
Tue 25.03.2025 time 09:00 - 10:30 (1 h 30 min) |
Mat3 Derivaatta ja integraali TZLM3300-3094 |
R35G206
Oppimistila
|
Thu 27.03.2025 time 17:30 - 19:00 (1 h 30 min) |
Mat3 Derivaatta ja integraali TZLM3300-3094/ Verkko-opetus |
https://jamk.zoom.us/j/67079201915
|
Mon 31.03.2025 time 09:00 - 10:30 (1 h 30 min) |
Mat3 Derivaatta ja integraali TZLM3300-3094 |
R35G206
Oppimistila
|
Tue 01.04.2025 time 09:00 - 10:30 (1 h 30 min) |
Mat3 Derivaatta ja integraali TZLM3300-3094 |
R35G206
Oppimistila
|
Thu 03.04.2025 time 17:30 - 19:00 (1 h 30 min) |
Mat3 Derivaatta ja integraali TZLM3300-3094/ Verkko-opetus |
https://jamk.zoom.us/j/67079201915
|
Mon 07.04.2025 time 09:00 - 10:30 (1 h 30 min) |
Mat3 Derivaatta ja integraali TZLM3300-3094 |
R35G206
Oppimistila
|
Tue 08.04.2025 time 09:00 - 10:30 (1 h 30 min) |
Mat3 Derivaatta ja integraali TZLM3300-3094 |
R35G206
Oppimistila
|
Tue 08.04.2025 time 17:30 - 19:00 (1 h 30 min) |
Mat3 Derivaatta ja integraali TZLM3300-3094/ Verkko-opetus |
https://jamk.zoom.us/j/67079201915
|
Mon 14.04.2025 time 09:00 - 10:30 (1 h 30 min) |
Mat3 Derivaatta ja integraali TZLM3300-3094 |
R35G206
Oppimistila
|
Tue 15.04.2025 time 09:00 - 10:30 (1 h 30 min) |
Mat3 Derivaatta ja integraali TZLM3300-3094 |
R35G206
Oppimistila
|
Tue 15.04.2025 time 17:30 - 19:00 (1 h 30 min) |
Mat3 Derivaatta ja integraali TZLM3300-3096/ Verkko-opetus |
https://jamk.zoom.us/j/67079201915
|
Tue 22.04.2025 time 08:00 - 10:30 (2 h 30 min) |
Mat3 Derivaatta ja integraali TZLM3300-3094 |
R35EP02
Oppimistila
|
Thu 24.04.2025 time 17:00 - 21:00 (4 h 0 min) |
Mat3 Derivaatta ja integraali TZLM3300-3094/ Verkko-opetus Koe |
Zoom
|
Evaluation scale
0-5
Objective
The object of the course
During this course you will learn the concepts needed to study continuous change and dynamic phenomena. With differential calculus you can study instantaneous rates of change and the slopes of curves. With integral calculus you can study accumulation of quantities and areas bounded by curves. During this course you learn how to use these concepts in applications.
Course competences
EUR-ACE: Knowledge and understanding
You have the knowledge and understanding of mathematics and other basic sciences underlying your engineering specialisation, at a level necessary to achieve the other programme learning outcomes.
The learning objectives of the course
After completing this course you know the meaning of derivative and integral as tools for modeling dynamic phenomena. You know how to differentiate and integrate. You know how to use the derivative and integral in applications.
Content
In this course, you will learn to master the tools needed to study phenomena of change, such as the concepts of derivatives and integrals. You will understand the meaning of these concepts and be able to apply them in practice. You will learn to derive and integrate and solve applied problems using these methods. This course will give you a strong foundation in applying mathematical methods to engineering problems.
The derivative and its different interpretations. Rules of differentiation. Using differentiation in optimization problems and other applications involving the derivative such as estimation of error. The definite integral. Rules of integration. The applications of the integral. Using technology in calculations.
Assessment criteria, satisfactory (1)
Sufficient 1
You know the concept of the derivative as the rate of change and as the slope of the tangent. Yo understand how to apply the derivative in optimization problems. You can differentiate and integrate polynomials without technology. You know the concept of the integral as accumulation of quantities and as area under a curve. You know the relation between integral and derivative.
Satisfactory 2
You have achieved the desired goals (look at the criteria of grade 1). You know many of the concepts and methods and how to apply them in familiar situations but your reasoning is sometimes deficient or you make mistakes in calculations.
Assessment criteria, good (3)
Good 3
You have achieved the desired goals(look at the criteria of grade 1). You know most of the concepts and methods and how to apply them in familiar situations showing often the ability to reason completely and calculate flawlessly
Very good 4
You have achieved the desired goals (look at the criteria of grade 1). You know most of the concepts and methods and how to apply them in new situations showing in most cases the ability to reason completely and calculate flawlessly.
Assessment criteria, excellent (5)
You have achieved the desired goals (look at the criteria of grade 1). You know all the concepts and methods and how to apply them in new situations showing always the ability to combine things, reason completely and calculate flawlessly.
Qualifications
You know the concept of a limit value. You can work with polynomial, exponential, logarithmic and trigonometric functions.