Koneoppiminen (4 op)
Toteutuksen tunnus: TTC8050-3008
Toteutuksen perustiedot
- Ilmoittautumisaika
-
01.08.2024 - 22.08.2024
Ilmoittautuminen toteutukselle on päättynyt.
- Ajoitus
-
26.08.2024 - 06.10.2024
Toteutus on päättynyt.
- Opintopistemäärä
- 4 op
- Lähiosuus
- 0 op
- Virtuaaliosuus
- 4 op
- Toteutustapa
- Verkko-opetus
- Yksikkö
- Teknologiayksikkö
- Opetuskielet
- suomi
- Paikat
- 0 - 35
- Koulutus
- Tieto- ja viestintätekniikka (AMK)
- Opettajat
- Juha Peltomäki
- Ryhmät
-
TTV22S5Tieto- ja viestintätekniikka (AMK)
-
TTV22S2Tieto- ja viestintätekniikka (AMK)
-
TTV22S3Tieto- ja viestintätekniikka (AMK)
-
TTV22S1Tieto- ja viestintätekniikka (AMK)
-
TTV22SMTieto- ja viestintätekniikka (AMK)
-
TTV22S4Tieto- ja viestintätekniikka (AMK)
-
TTV22SM2Tieto- ja viestintätekniikka (AMK)
-
ZJA24STIDA2Avoin amk, Data-analytiikka 2, Verkko
- Opintojakso
- TTC8050
Toteutuksella on 4 opetustapahtumaa joiden yhteenlaskettu kesto on 5 t 15 min.
Aika | Aihe | Tila |
---|---|---|
Ti 27.08.2024 klo 16:30 - 17:45 (1 t 15 min) |
Koneoppiminen TTC8050-3008 |
Online
|
Ti 03.09.2024 klo 16:30 - 17:45 (1 t 15 min) |
AI/DA -kirjastojen asennus |
Online
|
Ke 11.09.2024 klo 16:00 - 17:15 (1 t 15 min) |
Koneoppiminen TTC8050-3008 |
Zoom
|
To 26.09.2024 klo 16:00 - 17:30 (1 t 30 min) |
Koneoppiminen TTC8050-3008 |
Online
|
Arviointiasteikko
0-5
Tavoitteet
Ymmärrät koneoppimisen perusperiaatteet. Tiedät yleisimmät koneoppimisen menetelmät, osaat soveltaa niitä käytännössä olemassa olevaan dataan sekä tulkita menetelmien tulokset.
EUR-ACE-osaamiset:
Tieto ja ymmärrys
Tekniikan soveltaminen käytäntöön
Tutkimukset ja tiedonhaku
Sisältö
- Ohjattu ja ohjaamaton koneoppiminen sekä yleisimmät regressio- ja luokittelumallit
- Soveltaminen käyttäen Python-kirjastoja (NumPy, Pandas ja scikit-learn)
- Datan formaatti ja laatu
- Datajoukon jako opetus- ja testidataan
- Mallin tarkkuuden arviointi
Erilaiset koneoppimisen mallit:
- k lähintä naapuria (k-nearest neighbors)
- k-means -klusterointi
- Naiivi Bayes-menetelmä
- Tukivektorikone (Support Vector Machine)
- Pääkomponenttianalyysi (PCA)
- Päätöspuut ja satunnaismetsä
- Perseptroni (yksinkertainen neuroverkko)
Aika ja paikka
Opintojakso toteutetaan syyslukukaudella 2024.
Oppimateriaalit
Materiaali harjoitustehtäviä ja opiskeltavia asiasisältöjä varten jaetaan kurssin aikana. Opintojaksolla hyödynnetään Python 3.12+-ympäristöä, Git-versiohallintaa, GitLab-repositoryjä, scikit-learn, Pandas, visualisointikirjastoja sekä muita soveltuvia kirjastoja.
Opetusmenetelmät
Virtuaalinen opiskelu sisältäen harjoitustehtävien tekemisen sekä niihin liittyviin luento- ja esimerkkimateriaaleihin perehtymisen.
Harjoittelu- ja työelämäyhteistyö
Kurssin sisältö pyritään kytkemään työelämässä esiintyviin ongelmiin.
Toteutuksen valinnaiset suoritustavat
Hyväksilukemisen menettelytavat kuvataan tutkintosäännössä ja opinto-oppaassa. Opintojakson opettaja antaa lisätietoa mahdollisista opintojakson erityiskäytänteistä.
Opiskelijan ajankäyttö ja kuormitus
Yhden opintopisteen työmäärä vastaa 27 tunnin opiskelutyötä. Yhteensä opiskelutyömäärä (4 op.) kurssilla on 108 tuntia.
Arviointikriteerit, tyydyttävä (1)
Tyydyttävä 2: Tiedät koneoppimisen yleisimmin käytetyt tekniikat ja erilaisille ongelmille. Osaat valita koneoppimisen tekniikat ja soveltaa teknistä osaamistaan käytännössä. Lisäksi osaat arvioida pintapuolisesti toteutuksesi.
Välttävä 1: Tiedät koneoppimisen yleisimmin käytetyt tekniikat. Osaat soveltaa yleisimpiä koneoppimisen tekniikoita. Lisäksi osaat arvioida suppeasti toteutuksesi.
Arviointikriteerit, hyvä (3)
Kiitettävä 4: Tunnistat koneoppimisen tuomat hyödyt digitalisaation aikakautena. Osaat koneoppimisen yleisimmin käytetyt tekniikat ja osaat perustella käytettyjen tekniikoiden käytön erilaisissa tehtävissä. Osaat soveltaa teknistä osaamistaan käytännössä ja arvioida kriittisesti toteutuksensa ja perustella sen kehittämistä.
Hyvä 3: Tiedostat koneoppimisen tuomat hyödyt digitalisaation aikakautena. Osaat koneoppimisen yleisimmin käytetyt tekniikat erilaisille ongelmille. Osaat soveltaa teknistä osaamistaan käytännössä arvioida toteutuksensa ja perustella sen kehittämistä.
Arviointikriteerit, kiitettävä (5)
Erinomainen 5: Tunnistat koneoppimisen tuomat hyödyt digitalisaation aikakautena. Hallitset koneoppimisen tekniikat monipuolisesti ja osaat perustella käytettyjen tekniikoiden käytön erilaisissa tehtävissä. Osaat soveltaa teknistä osaamistaan käytännössä ja arvioida kriittisesti toteutuksensa ja perustella sen kehittämistä.
Esitietovaatimukset
Tietotekniikan peruskäyttätaidot, ohjelmoinnin perusosaaminen, Python-ohjelmointikielen tunteminen ja osaaminen.
Lisäksi Laskennalliset algoritmit ja Datan esikäsittely opintojaksot.
Lisätiedot
Opintojakso arvioidaan palautettujen harjoitustehtävien perusteella.
Arviointimenetelmät käydään läpi opintojakson alussa.