Siirry suoraan sisältöön

Differentiaaliyhtälöt rakennustekniikassa (3 op)

Toteutuksen tunnus: TZLM4350-3006

Toteutuksen perustiedot


Ilmoittautumisaika
04.08.2025 - 21.08.2025
Ilmoittautuminen toteutukselle ei ole vielä alkanut.
Ajoitus
25.08.2025 - 19.12.2025
Toteutus ei ole vielä alkanut.
Opintopistemäärä
3 op
Lähiosuus
3 op
Toteutustapa
Lähiopetus
Yksikkö
Teknologiayksikkö
Toimipiste
Pääkampus
Opetuskielet
suomi
Paikat
20 - 60
Koulutus
Rakennus- ja yhdyskuntatekniikka (AMK)
Opettajat
Antti Kosonen
Ajoitusryhmät
TRY24SA (Paikkoja: 30 . Avoin AMK : 0.)
TRY24SB (Paikkoja: 30 . Avoin AMK : 0.)
Ryhmät
TRY24SA
Rakennus- ja yhdyskuntatekniikka (AMK)
TRY24SB
Rakennus- ja yhdyskuntatekniikka (AMK)
TRY24S1
Rakennus- ja yhdyskuntatekniikka (AMK)
Pienryhmät
TRY24SA
TRY24SB
Opintojakso
TZLM4350
Toteutukselle TZLM4350-3006 ei löytynyt varauksia!

Arviointiasteikko

0-5

Sisällön jaksotus

Tarkempi aikataulusuunnitelma esitellään kurssin aloitustapaamisessa, mutta sisältö käsitellään suunnilleen seuraavassa järjestyksessä:
- Statiikan kertaus ja hieman lujuusoppia
- Derivaatan ja integraalin kertaus
- Paloittain määriteltyjen funktioiden integrointi
- Leikkausvoima ja taivutusmomentti palkeissa paikan funktioina ja näihin liittyvät differentiaaliyhtälöt
- Eulerin ja Bernoullin differentiaaliyhtälö ja sen ratkaisu erilaisilla reunaehdoilla
- Nurjahdus

Tavoitteet

Opintojakson tarkoitus
Käytyäsi tämän opintojakson ymmärrät, miten differentiaaliyhtälöitä käytetään rakennustekniikassa palkin taipumien laskemiseen.

Opintojakson osaamiset
Opintojaksolla edistetään ja arvioidaan tietoa ja ymmärrystä insinööritieteiden pohjana olevista matemaattisista periaatteista differentiaaliyhtälöiden osalta.

Opintojakson osaamistavoite
Opintojakson käytyäsi ymmärrät differentiaaliyhtälön käsitteen. Osaat ratkaista ensimmäisen kertaluvun differentiaaliyhtälöitä apuvälineitä käyttäen. Ymmärrät alku- ja reunaehtojen merkityksen. Osaat ratkaista rakennustekniikkaan liittyviä soveltavia tehtäviä.

Sisältö

Ääriarvojen käyttö palkin suurimman taipuman laskemisessa. Differentiaaliyhtälöiden käsite ja ratkaisun sekä alku- ja reunaehtojen tarkistaminen. Differentiaaliyhtälön ratkaiseminen integroimalla. Kuorman yhtälön määrittäminen sekä alku- ja reunaehtojen määrittäminen tuennan mukaisesti. Palkin leikkausvoiman, taivutusmomentin, taipuman ja taipumaviivan laskenta sekä näiden kuvaajat ja kuvaajien tulkinta.

Aika ja paikka

Opintojakso toteutetaan Rajakadun kampuksella 25.8. - 16.11.2025.

Oppimateriaalit

Opettajan laatima kirjallinen opetusmateriaali.

JAMK:n kirjastossa saatavilla olevaa oheislukemistoa:
- Salmi, T. & Pajunen, S. 2010. Lujuusoppi. Tampere: Pressus.
- Outinen, H. & Salmi, T. 2004. Lujuusopin perusteet. Tampere: Pressus.
- Karhunen, J. 1997. Lujuusoppi. 5. korj. p. Helsinki ; Espoo: Otatieto
- Beer, F. P. k., Johnston, E. R., DeWolf, J. T. & Mazurek, D. F. 2015. Mechanics of materials. Seventh edition in SI units. New York: McGraw-Hill Education.
- Bedford, A. & Liechti, K. M. 2020. Mechanics of materials. Second Edition. Cham: Springer International Publishing.

Opetusmenetelmät

Lähiopetus. Opintojakson oppitunneilla on läsnäolovelvoite.

Harjoitustehtävien aktiivinen laskeminen on välttämätön edellytys oppimistavoitteiden saavuttamiselle.

Harjoittelu- ja työelämäyhteistyö

-

Tenttien ajankohdat ja uusintamahdollisuudet

Loppukoe 10.11. alkavalla viikolla
1. uusinta 24.11. alkavalla viikolla
2. uusinta 15.12. alkavalla viikolla

Kansainvälisyys

-

Toteutuksen valinnaiset suoritustavat

Ei vaihtoehtoisia suoritustapoja.

Opiskelijan ajankäyttö ja kuormitus

3op * 27 h/op = 81 h, josta lähiopetus ja loppukoe noin 35 tuntia.

Arviointikriteerit, tyydyttävä (1)

1: Tunnet differentiaaliyhtälön käsitteen. Ymmärrät, kuinka differentiaaliyhtälöitä voidaan käyttää rakennustekniikassa palkin taipumien laskentaan. Osaat tarkistaa differentiaaliyhtälön ratkaisun ja sen, että annettu ratkaisu toteuttaa alku- ja reunaehdot. Osaat ratkaista palkin taipuman mallin avulla.

2: Olet saavuttanut tavoitellut osaamiset (ks arvosanan 1 kriteerit). Osaat ratkaista palkin taipuman ilman mallia, mutta joskus päättelysi on puutteellista tai laskelmasi virheellisiä.

Arviointikriteerit, hyvä (3)

3: Olet saavuttanut tavoitellut osaamiset (ks arvosanan 1 kriteerit). Tunnet lähes kaikki käsitteet ja menetelmät ja osaat soveltaa niitä itsellesi tutuissa tilanteissa usein täydellisesti päätellen ja virheettömästi laskien.

4: Olet saavuttanut tavoitellut osaamiset (ks arvosanan 1 kriteerit). Tunnet lähes kaikki käsitteet ja menetelmät ja osaat soveltaa niitä myös itsellesi uusissa tilanteissa lähes aina täydellisesti päätellen ja virheettömästi laskien.

Arviointikriteerit, kiitettävä (5)

5: Olet saavuttanut tavoitellut osaamiset (ks arvosanan 1 kriteerit). Tunnet kaikki käsitteet ja menetelmät ja osaat soveltaa niitä itsellesi uusissa tilanteissa asioita yhdistellen, täydellisesti päätellen ja virheettömästi laskien.

Esitietovaatimukset

Ymmärrät derivaatan käsitteen ja osaat soveltaa derivaattaa optimointitehtävissä. Ymmärrät integraalin käsitteen. Osaat derivoida ja integroida apuvälineillä.

Lisätiedot

Kurssin arviointi perustuu loppukokeeseen ja harjoitustehtäviin.

Jos toteutukselle ilmoittautunut opiskelija ei kolmen viikon aikana osoita aktiivisuutta toteutuksella, ilmoittautuminen hylätään.

Siirry alkuun