Artificial Intelligence (5 op)
Toteutuksen tunnus: YTIP2100-3002
Toteutuksen perustiedot
- Ilmoittautumisaika
-
02.08.2021 - 05.09.2021
Ilmoittautuminen toteutukselle on päättynyt.
- Ajoitus
-
27.08.2021 - 17.12.2021
Toteutus on päättynyt.
- Opintopistemäärä
- 5 op
- Lähiosuus
- 1 op
- Virtuaaliosuus
- 4 op
- Toteutustapa
- Monimuoto-opetus
- Yksikkö
- Teknologiayksikkö
- Toimipiste
- Lutakon kampus
- Opetuskielet
- englanti
- Paikat
- 0 - 35
- Koulutus
- Master's Degree Programme in Artificial Intelligence and Data Analytics
- Opettajat
- Tuula Kotikoski
- Tuomo Sipola
- Vastuuopettaja
- Mika Rantonen
- Ryhmät
-
YTI21S1Master's Degree Programme in Artificial Intelligence and Data-analytics
-
ZJA21STIPYIAAvoin AMK, tekniikka, ICT, Artificial Intelligence and Data-analytics
- Opintojakso
- YTIP2100
Arviointiasteikko
0-5
Tavoitteet
The student understands the purpose of artificial intelligence and knows the importance and possibilities of data. The student understands the importance of data quality and the ethics of artificial intelligence. The student will know the steps of data analytics/machine learning/deep learning processes. The student has knowledge and skills to plan a data strategy.
Course competences
EUYKN EUR-ACE: Knowledge and Understanding, Master's Degree
EUYCT EUR-ACE: Communication and Team-working, Master's Degree
EUYLL EUR-ACE: Lifelong Learning, Master's Degree
Sisältö
The key topics of the course are:
The possibilities of data
Ethics of Artificial Intelligence (AI)
The importance of data quality
Methodology of Data analytics (DA) and AI
DA and AI project process and management
Data strategy
Open source tools to DA, ML and AI
Aika ja paikka
Kontaktiopetus perjantaisin klo 14-20 ja lauantaisin klo 9-15.
Opetus on IT-Dynamolla, Piippukatu 2, 40100 Jyväskylä.
Oppimateriaalit
Määrittellään ensimmäisellä luennolla.
Opetusmenetelmät
Kontaksiopetus 2 viikonloppua lukukauden aikana.
Kontaktipäivien välissä harjoitustehtäviä ja etäopetusta.
Harjoitustyö omaan tilanteeseen liittyvästä aiheesta.
Harjoittelu- ja työelämäyhteistyö
It is advisable that the students use their own work environment as an object of study and as a data source.
Possible guest lecturers from companies.
Opiskelijan ajankäyttö ja kuormitus
5 ECTS credits equals about 135 hours of study work.
Contact instruction: 24 hours
Exercises: 48 hours
Study project: 63 hours
Arviointikriteerit, tyydyttävä (1)
**Assessment criteria, sufficient 1, satisfactory 2
Sufficient 1: Student has sufficient knowledge of data analytics and artificial intelligence and the possibilities of data. Student is able to form a partially comprehensive data strategy and describe the DA/AI process. In addition, student understands the restrictions of GDPR legislation and regulations and the ethical aspects affecting the operations of actors at a sufficient level.
Satisfactory 2: Student has satisfactory knowledge of data analytics and artificial intelligence and the possibilities of data. Student is able to form a partially comprehensive data strategy and describe the DA/AI process. In addition, student understands the restrictions of GDPR legislation and regulations and the ethical aspects affecting the operations of actors at a satisfactory level.
Arviointikriteerit, hyvä (3)
Good 3: Student has good knowledge of data analytics and artificial intelligence and the possibilities of data. Student is able to form a partially comprehensive data strategy and describe the DA/AI process. In addition, student understands the restrictions of GDPR legislation and regulations and the ethical aspects affecting the operations of actors well.
Very Good 4: Student has very good knowledge of data analytics and artificial intelligence and the possibilities of data. Student is able to form a comprehensive data strategy and describe the DA/AI process. In addition, student understands the restrictions of GDPR legislation and regulations and the ethical aspects affecting the operations of actors very well.
Arviointikriteerit, kiitettävä (5)
Excellent 5: Student has excellent knowledge of data analytics and artificial intelligence and the possibilities of data. Student is able to form a comprehensive data strategy and describe the DA/AI process. In addition, student understands excellently the restrictions of GDPR legislation and regulations and the ethical aspects affecting the operations of actors.
Lisätiedot
Avoin AMK polkuopiskelijat: 5 paikkaa