Siirry suoraan sisältöön

Koneoppiminen web-sovelluksissaLaajuus (4 op)

Tunnus: HTKA0220

Laajuus

4 op

Opetuskieli

  • suomi

Vastuuhenkilö

  • Tommi Tuikka

Osaamistavoitteet

Opintojakson tarkoitus
Kiinnostaako sinua oppia kehittämään älykkäitä datan perusteella päätöksiä tekeviä web-sovelluksia? Tekoälyn ja koneoppimisen hyödyntäminen on tulevaisuudessa yhä tärkeämpi osa web-sovelluskehittäjän työtä. Opintojaksolla tutustutaan koneoppimisalgoritmeihin ja neuroverkkoihin web-sovellusten asiakas- ja palvelinpuolella sekä pilvipalvelualustalla. Opintojakson suoritettuasi osaat kehittää dataa analysoivia web-sovelluksia koneoppimiskirjaston sekä pilvialustan tarjoamien palveluiden avulla.

Opintojakson osaamiset
Sovelluskehitysosaaminen

Opintojakson osaamistavoite
Opiskelija osaa toteuttaa erilaisia datalähteitä ja koneoppimisalgoritmeja hyödyntäviä dataa analysoivia web-sovelluksia sekä asiakas- että palvelinpuolelle. Opiskelija osaa hyödyntää neuroverkkoja koneoppimiskirjaston avulla ja osaa käyttää pilvialustan palveluita koneoppimissovellusten toteutuksessa. Opiskelija tuntee yleisimmät koneoppimisalgoritmien tyypit ja käyttökohteet ja osaa hyödyntää niitä soveltuvissa käyttötilanteissa.

Sisältö

Opintojaksolla opetellaan kehittämään koneoppimiseen ja tekoälyyn perustuvia web-sovelluksia. Sisältöön kuuluvat mm. datan esikäsittely ja analysointi, klassinen koneoppiminen, neuroverkkoihin perustuva koneoppiminen selainsovelluksessa ja palvelinsovelluksessa sekä pilvialustan koneoppimis- ja tekoälypalveluiden hyödyntäminen web-sovelluksissa. Opintojaksolta saa perusvalmiudet koneoppimis- ja tekoälypalveluiden hyödyntämiseen web-sovelluskehityksessä.

Esitietovaatimukset

Tietorakenteet ja algoritmit
Backend- ja Frontend web-sovelluskehityksen perusteet

Arviointikriteerit, tyydyttävä (1)

(Välttävä 1) Opiskelija osaa toteuttaa perustason koneoppimissovelluksia oppitunneilla esitettyjen mallien tai webissä olevien tutoriaalien avulla. Hän on yrittänyt tehdä kaikki harjoitustehtävät ja päässyt ohjeiden määrittämään lopputulokseen vähintään 50%:ssa tehtävistä.

(Tyydyttävä 2) Opiskelija osaa toteuttaa perustason koneoppimissovelluksia oppitunneilla esitettyjen mallien tai webissä olevien tutoriaalien avulla. Hän on yrittänyt tehdä kaikki harjoitustehtävät ja päässyt ohjeiden määrittämään lopputulokseen vähintään 70%:ssa tehtävistä.

Arviointikriteerit, hyvä (3)

(Hyvä 3) Opiskelija osaa toteuttaa perustason koneoppimissovelluksia ja osaa soveltaa opittuja teknologioita myös vaativampien sovellusten kehityksessä. Hän osaa oma-aloitteisesti laajentaa osaamistaan myös kurssilla esitettyjen asioiden ulkopuolelle. Hän on yrittänyt tehdä kaikki harjoitustehtävät ja päässyt ohjeiden määrittämään lopputulokseen vähintään 80%:ssa tehtävistä.

(Kiitettävä 4) Opiskelija osaa toteuttaa perustason koneoppimissovelluksia ja osaa soveltaa opittuja teknologioita myös vaativampien sovellusten kehityksessä. Hän osaa oma-aloitteisesti laajentaa osaamistaan myös kurssilla esitettyjen asioiden ulkopuolelle. Hän on yrittänyt tehdä kaikki harjoitustehtävät ja päässyt ohjeiden määrittämään lopputulokseen vähintään 90%:ssa tehtävistä.

Arviointikriteerit, kiitettävä (5)

(Erinomainen 5) Opiskelija osaa edellisten vaatimusten lisäksi arvioida kriittisesti koneoppimisalgoritmeja ja pilvialustojen työkaluja sekä ymmärtää teknologioiden valintakriteerit eri käyttötarkoituksiin. Hän on tehnyt kaikki harjoitustehtävät ja päässyt kaikissa ohjeiden määrittämään lopputulokseen.

Ilmoittautumisaika

01.08.2024 - 22.08.2024

Ajoitus

21.10.2024 - 18.12.2024

Opintopistemäärä

4 op

Toteutustapa

Lähiopetus

Yksikkö

Liiketoimintayksikkö

Toimipiste

Pääkampus

Opetuskielet
  • Suomi
Paikat

20 - 40

Koulutus
  • Tietojenkäsittely (AMK)
Opettaja
  • Tommi Tuikka
Ryhmät
  • ZJA24SI
    Avoin amk, tiko
  • HTK23S1
    Tietojenkäsittely (AMK)

Tavoitteet

Opintojakson tarkoitus
Kiinnostaako sinua oppia kehittämään älykkäitä datan perusteella päätöksiä tekeviä web-sovelluksia? Tekoälyn ja koneoppimisen hyödyntäminen on tulevaisuudessa yhä tärkeämpi osa web-sovelluskehittäjän työtä. Opintojaksolla tutustutaan koneoppimisalgoritmeihin ja neuroverkkoihin web-sovellusten asiakas- ja palvelinpuolella sekä pilvipalvelualustalla. Opintojakson suoritettuasi osaat kehittää dataa analysoivia web-sovelluksia koneoppimiskirjaston sekä pilvialustan tarjoamien palveluiden avulla.

Opintojakson osaamiset
Sovelluskehitysosaaminen

Opintojakson osaamistavoite
Opiskelija osaa toteuttaa erilaisia datalähteitä ja koneoppimisalgoritmeja hyödyntäviä dataa analysoivia web-sovelluksia sekä asiakas- että palvelinpuolelle. Opiskelija osaa hyödyntää neuroverkkoja koneoppimiskirjaston avulla ja osaa käyttää pilvialustan palveluita koneoppimissovellusten toteutuksessa. Opiskelija tuntee yleisimmät koneoppimisalgoritmien tyypit ja käyttökohteet ja osaa hyödyntää niitä soveltuvissa käyttötilanteissa.

Sisältö

Opintojaksolla opetellaan kehittämään koneoppimiseen ja tekoälyyn perustuvia web-sovelluksia. Sisältöön kuuluvat mm. datan esikäsittely ja analysointi, klassinen koneoppiminen, neuroverkkoihin perustuva koneoppiminen selainsovelluksessa ja palvelinsovelluksessa sekä pilvialustan koneoppimis- ja tekoälypalveluiden hyödyntäminen web-sovelluksissa. Opintojaksolta saa perusvalmiudet koneoppimis- ja tekoälypalveluiden hyödyntämiseen web-sovelluskehityksessä.

Aika ja paikka

Syksy 2024

Opetusmenetelmät

Videoluennot ja kontaktitunnit, joilla saa ohjausta

Opintojakso voidaan suorittaa myös kokonaan verkossa. Opintojaksolla on etukäteen nauhoitetut videoluennot. Lisäksi opintojakso sisältää 0,5-1 tunnin mittaisen henkilökohtaisen arviointikeskustelun opettajan kanssa Zoom-yhteydessä.

Opiskelijan ajankäyttö ja kuormitus

108 tuntia

Lisätietoja opiskelijoille

Avoin amk 5
EduFutura 5
Harjoitustehtävät arvioidaan henkilökohtaisessa arviointikeskustelussa. Harjoitustehtävien ratkaisujen ymmärtäminen ja opettajan kysymyksiin vastaaminen painottuvat arvioinnissa. Pelkkä tehtävien tekeminen esim. tekoälyavusteisesti ei takaa vielä mitään arvosanaa.

Arviointiasteikko

0-5

Arviointikriteerit, tyydyttävä (1-2)

(Välttävä 1) Opiskelija osaa toteuttaa perustason koneoppimissovelluksia oppitunneilla esitettyjen mallien tai webissä olevien tutoriaalien avulla. Hän on yrittänyt tehdä kaikki harjoitustehtävät ja päässyt ohjeiden määrittämään lopputulokseen vähintään 50%:ssa tehtävistä.

(Tyydyttävä 2) Opiskelija osaa toteuttaa perustason koneoppimissovelluksia oppitunneilla esitettyjen mallien tai webissä olevien tutoriaalien avulla. Hän on yrittänyt tehdä kaikki harjoitustehtävät ja päässyt ohjeiden määrittämään lopputulokseen vähintään 70%:ssa tehtävistä.

Arviointikriteerit, hyvä (3-4)

(Hyvä 3) Opiskelija osaa toteuttaa perustason koneoppimissovelluksia ja osaa soveltaa opittuja teknologioita myös vaativampien sovellusten kehityksessä. Hän osaa oma-aloitteisesti laajentaa osaamistaan myös kurssilla esitettyjen asioiden ulkopuolelle. Hän on yrittänyt tehdä kaikki harjoitustehtävät ja päässyt ohjeiden määrittämään lopputulokseen vähintään 80%:ssa tehtävistä.

(Kiitettävä 4) Opiskelija osaa toteuttaa perustason koneoppimissovelluksia ja osaa soveltaa opittuja teknologioita myös vaativampien sovellusten kehityksessä. Hän osaa oma-aloitteisesti laajentaa osaamistaan myös kurssilla esitettyjen asioiden ulkopuolelle. Hän on yrittänyt tehdä kaikki harjoitustehtävät ja päässyt ohjeiden määrittämään lopputulokseen vähintään 90%:ssa tehtävistä.

Arviointikriteerit, kiitettävä (5)

(Erinomainen 5) Opiskelija osaa edellisten vaatimusten lisäksi arvioida kriittisesti koneoppimisalgoritmeja ja pilvialustojen työkaluja sekä ymmärtää teknologioiden valintakriteerit eri käyttötarkoituksiin. Hän on tehnyt kaikki harjoitustehtävät ja päässyt kaikissa ohjeiden määrittämään lopputulokseen.

Esitietovaatimukset

Tietorakenteet ja algoritmit
Backend- ja Frontend web-sovelluskehityksen perusteet

Ilmoittautumisaika

01.08.2023 - 24.08.2023

Ajoitus

09.10.2023 - 19.12.2023

Opintopistemäärä

4 op

Toteutustapa

Lähiopetus

Yksikkö

Liiketoimintayksikkö

Toimipiste

Pääkampus

Opetuskielet
  • Suomi
Paikat

20 - 45

Koulutus
  • Tietojenkäsittely (AMK)
Opettaja
  • Tommi Tuikka
Ryhmät
  • HTK22S1
    Tietojenkäsittely (AMK)
  • ZJA23SI
    Avoin amk, tiko

Tavoitteet

Opintojakson tarkoitus
Kiinnostaako sinua oppia kehittämään älykkäitä datan perusteella päätöksiä tekeviä web-sovelluksia? Tekoälyn ja koneoppimisen hyödyntäminen on tulevaisuudessa yhä tärkeämpi osa web-sovelluskehittäjän työtä. Opintojaksolla tutustutaan koneoppimisalgoritmeihin ja neuroverkkoihin web-sovellusten asiakas- ja palvelinpuolella sekä pilvipalvelualustalla. Opintojakson suoritettuasi osaat kehittää dataa analysoivia web-sovelluksia koneoppimiskirjaston sekä pilvialustan tarjoamien palveluiden avulla.

Opintojakson osaamiset
Sovelluskehitysosaaminen

Opintojakson osaamistavoite
Opiskelija osaa toteuttaa erilaisia datalähteitä ja koneoppimisalgoritmeja hyödyntäviä dataa analysoivia web-sovelluksia sekä asiakas- että palvelinpuolelle. Opiskelija osaa hyödyntää neuroverkkoja koneoppimiskirjaston avulla ja osaa käyttää pilvialustan palveluita koneoppimissovellusten toteutuksessa. Opiskelija tuntee yleisimmät koneoppimisalgoritmien tyypit ja käyttökohteet ja osaa hyödyntää niitä soveltuvissa käyttötilanteissa.

Sisältö

Opintojaksolla opetellaan kehittämään koneoppimiseen ja tekoälyyn perustuvia web-sovelluksia. Sisältöön kuuluvat mm. datan esikäsittely ja analysointi, klassinen koneoppiminen, neuroverkkoihin perustuva koneoppiminen selainsovelluksessa ja palvelinsovelluksessa sekä pilvialustan koneoppimis- ja tekoälypalveluiden hyödyntäminen web-sovelluksissa. Opintojaksolta saa perusvalmiudet koneoppimis- ja tekoälypalveluiden hyödyntämiseen web-sovelluskehityksessä.

Lisätietoja opiskelijoille

Avoin 2
EduFutura 3

Arviointiasteikko

0-5

Arviointikriteerit, tyydyttävä (1-2)

(Välttävä 1) Opiskelija osaa toteuttaa perustason koneoppimissovelluksia oppitunneilla esitettyjen mallien tai webissä olevien tutoriaalien avulla. Hän on yrittänyt tehdä kaikki harjoitustehtävät ja päässyt ohjeiden määrittämään lopputulokseen vähintään 50%:ssa tehtävistä.

(Tyydyttävä 2) Opiskelija osaa toteuttaa perustason koneoppimissovelluksia oppitunneilla esitettyjen mallien tai webissä olevien tutoriaalien avulla. Hän on yrittänyt tehdä kaikki harjoitustehtävät ja päässyt ohjeiden määrittämään lopputulokseen vähintään 70%:ssa tehtävistä.

Arviointikriteerit, hyvä (3-4)

(Hyvä 3) Opiskelija osaa toteuttaa perustason koneoppimissovelluksia ja osaa soveltaa opittuja teknologioita myös vaativampien sovellusten kehityksessä. Hän osaa oma-aloitteisesti laajentaa osaamistaan myös kurssilla esitettyjen asioiden ulkopuolelle. Hän on yrittänyt tehdä kaikki harjoitustehtävät ja päässyt ohjeiden määrittämään lopputulokseen vähintään 80%:ssa tehtävistä.

(Kiitettävä 4) Opiskelija osaa toteuttaa perustason koneoppimissovelluksia ja osaa soveltaa opittuja teknologioita myös vaativampien sovellusten kehityksessä. Hän osaa oma-aloitteisesti laajentaa osaamistaan myös kurssilla esitettyjen asioiden ulkopuolelle. Hän on yrittänyt tehdä kaikki harjoitustehtävät ja päässyt ohjeiden määrittämään lopputulokseen vähintään 90%:ssa tehtävistä.

Arviointikriteerit, kiitettävä (5)

(Erinomainen 5) Opiskelija osaa edellisten vaatimusten lisäksi arvioida kriittisesti koneoppimisalgoritmeja ja pilvialustojen työkaluja sekä ymmärtää teknologioiden valintakriteerit eri käyttötarkoituksiin. Hän on tehnyt kaikki harjoitustehtävät ja päässyt kaikissa ohjeiden määrittämään lopputulokseen.

Esitietovaatimukset

Tietorakenteet ja algoritmit
Backend- ja Frontend web-sovelluskehityksen perusteet

Ilmoittautumisaika

01.08.2022 - 25.08.2022

Ajoitus

03.10.2022 - 21.12.2022

Opintopistemäärä

4 op

Virtuaaliosuus

2 op

Toteutustapa

50 % Lähiopetus, 50 % Verkko-opetus

Yksikkö

Liiketoimintayksikkö

Opetuskielet
  • Suomi
Paikat

0 - 45

Koulutus
  • Tietojenkäsittely (AMK)
Opettaja
  • Tommi Tuikka
Ryhmät
  • ZJK22SI
    Korkeakoulujen välinen yhteistyö, TIKO
  • HTK21S1
    Tietojenkäsittely (AMK)
  • ZJA22SI
    Avoin AMK, tiko

Tavoitteet

Opintojakson tarkoitus
Kiinnostaako sinua oppia kehittämään älykkäitä datan perusteella päätöksiä tekeviä web-sovelluksia? Tekoälyn ja koneoppimisen hyödyntäminen on tulevaisuudessa yhä tärkeämpi osa web-sovelluskehittäjän työtä. Opintojaksolla tutustutaan koneoppimisalgoritmeihin ja neuroverkkoihin web-sovellusten asiakas- ja palvelinpuolella sekä pilvipalvelualustalla. Opintojakson suoritettuasi osaat kehittää dataa analysoivia web-sovelluksia koneoppimiskirjaston sekä pilvialustan tarjoamien palveluiden avulla.

Opintojakson osaamiset
Sovelluskehitysosaaminen

Opintojakson osaamistavoite
Opiskelija osaa toteuttaa erilaisia datalähteitä ja koneoppimisalgoritmeja hyödyntäviä dataa analysoivia web-sovelluksia sekä asiakas- että palvelinpuolelle. Opiskelija osaa hyödyntää neuroverkkoja koneoppimiskirjaston avulla ja osaa käyttää pilvialustan palveluita koneoppimissovellusten toteutuksessa. Opiskelija tuntee yleisimmät koneoppimisalgoritmien tyypit ja käyttökohteet ja osaa hyödyntää niitä soveltuvissa käyttötilanteissa.

Sisältö

Opintojaksolla opetellaan kehittämään koneoppimiseen ja tekoälyyn perustuvia web-sovelluksia. Sisältöön kuuluvat mm. datan esikäsittely ja analysointi, klassinen koneoppiminen, neuroverkkoihin perustuva koneoppiminen selainsovelluksessa ja palvelinsovelluksessa sekä pilvialustan koneoppimis- ja tekoälypalveluiden hyödyntäminen web-sovelluksissa. Opintojaksolta saa perusvalmiudet koneoppimis- ja tekoälypalveluiden hyödyntämiseen web-sovelluskehityksessä.

Aika ja paikka

Syksy 2022

Oppimateriaali ja suositeltava kirjallisuus

Materiaali verkkosivuilla

Opetusmenetelmät

Videoluennot ja ohjaustunnit

Opiskelijan ajankäyttö ja kuormitus

98 tuntia

Lisätietoja opiskelijoille

EduFutura 5

Arviointiasteikko

0-5

Arviointikriteerit, tyydyttävä (1-2)

(Välttävä 1) Opiskelija osaa toteuttaa perustason koneoppimissovelluksia oppitunneilla esitettyjen mallien tai webissä olevien tutoriaalien avulla. Hän on yrittänyt tehdä kaikki harjoitustehtävät ja päässyt ohjeiden määrittämään lopputulokseen vähintään 50%:ssa tehtävistä.

(Tyydyttävä 2) Opiskelija osaa toteuttaa perustason koneoppimissovelluksia oppitunneilla esitettyjen mallien tai webissä olevien tutoriaalien avulla. Hän on yrittänyt tehdä kaikki harjoitustehtävät ja päässyt ohjeiden määrittämään lopputulokseen vähintään 70%:ssa tehtävistä.

Arviointikriteerit, hyvä (3-4)

(Hyvä 3) Opiskelija osaa toteuttaa perustason koneoppimissovelluksia ja osaa soveltaa opittuja teknologioita myös vaativampien sovellusten kehityksessä. Hän osaa oma-aloitteisesti laajentaa osaamistaan myös kurssilla esitettyjen asioiden ulkopuolelle. Hän on yrittänyt tehdä kaikki harjoitustehtävät ja päässyt ohjeiden määrittämään lopputulokseen vähintään 80%:ssa tehtävistä.

(Kiitettävä 4) Opiskelija osaa toteuttaa perustason koneoppimissovelluksia ja osaa soveltaa opittuja teknologioita myös vaativampien sovellusten kehityksessä. Hän osaa oma-aloitteisesti laajentaa osaamistaan myös kurssilla esitettyjen asioiden ulkopuolelle. Hän on yrittänyt tehdä kaikki harjoitustehtävät ja päässyt ohjeiden määrittämään lopputulokseen vähintään 90%:ssa tehtävistä.

Arviointikriteerit, kiitettävä (5)

(Erinomainen 5) Opiskelija osaa edellisten vaatimusten lisäksi arvioida kriittisesti koneoppimisalgoritmeja ja pilvialustojen työkaluja sekä ymmärtää teknologioiden valintakriteerit eri käyttötarkoituksiin. Hän on tehnyt kaikki harjoitustehtävät ja päässyt kaikissa ohjeiden määrittämään lopputulokseen.

Esitietovaatimukset

Tietorakenteet ja algoritmit
Backend- ja Frontend web-sovelluskehityksen perusteet

Ilmoittautumisaika

02.08.2021 - 05.09.2021

Ajoitus

04.10.2021 - 28.01.2022

Opintopistemäärä

4 op

Virtuaaliosuus

4 op

Toteutustapa

Verkko-opetus

Yksikkö

Liiketoimintayksikkö

Opetuskielet
  • Suomi
Paikat

0 - 50

Koulutus
  • Tietojenkäsittely (AMK)
Opettaja
  • Tommi Tuikka
Ryhmät
  • HTK20S1
    Tietojenkäsittely

Tavoitteet

Opintojakson tarkoitus
Kiinnostaako sinua oppia kehittämään älykkäitä datan perusteella päätöksiä tekeviä web-sovelluksia? Tekoälyn ja koneoppimisen hyödyntäminen on tulevaisuudessa yhä tärkeämpi osa web-sovelluskehittäjän työtä. Opintojaksolla tutustutaan koneoppimisalgoritmeihin ja neuroverkkoihin web-sovellusten asiakas- ja palvelinpuolella sekä pilvipalvelualustalla. Opintojakson suoritettuasi osaat kehittää dataa analysoivia web-sovelluksia koneoppimiskirjaston sekä pilvialustan tarjoamien palveluiden avulla.

Opintojakson osaamiset
Sovelluskehitysosaaminen

Opintojakson osaamistavoite
Opiskelija osaa toteuttaa erilaisia datalähteitä ja koneoppimisalgoritmeja hyödyntäviä dataa analysoivia web-sovelluksia sekä asiakas- että palvelinpuolelle. Opiskelija osaa hyödyntää neuroverkkoja koneoppimiskirjaston avulla ja osaa käyttää pilvialustan palveluita koneoppimissovellusten toteutuksessa. Opiskelija tuntee yleisimmät koneoppimisalgoritmien tyypit ja käyttökohteet ja osaa hyödyntää niitä soveltuvissa käyttötilanteissa.

Sisältö

Opintojaksolla opetellaan kehittämään koneoppimiseen ja tekoälyyn perustuvia web-sovelluksia. Sisältöön kuuluvat mm. datan esikäsittely ja analysointi, klassinen koneoppiminen, neuroverkkoihin perustuva koneoppiminen selainsovelluksessa ja palvelinsovelluksessa sekä pilvialustan koneoppimis- ja tekoälypalveluiden hyödyntäminen web-sovelluksissa. Opintojaksolta saa perusvalmiudet koneoppimis- ja tekoälypalveluiden hyödyntämiseen web-sovelluskehityksessä.

Aika ja paikka

Syksy 2021

Oppimateriaali ja suositeltava kirjallisuus

Materiaali verkkosivuilla

Opetusmenetelmät

Luennot ja ohjaustunnit

Opiskelijan ajankäyttö ja kuormitus

98 tuntia

Arviointiasteikko

0-5

Arviointikriteerit, tyydyttävä (1-2)

(Välttävä 1) Opiskelija osaa toteuttaa perustason koneoppimissovelluksia oppitunneilla esitettyjen mallien tai webissä olevien tutoriaalien avulla. Hän on yrittänyt tehdä kaikki harjoitustehtävät ja päässyt ohjeiden määrittämään lopputulokseen vähintään 50%:ssa tehtävistä.

(Tyydyttävä 2) Opiskelija osaa toteuttaa perustason koneoppimissovelluksia oppitunneilla esitettyjen mallien tai webissä olevien tutoriaalien avulla. Hän on yrittänyt tehdä kaikki harjoitustehtävät ja päässyt ohjeiden määrittämään lopputulokseen vähintään 70%:ssa tehtävistä.

Arviointikriteerit, hyvä (3-4)

(Hyvä 3) Opiskelija osaa toteuttaa perustason koneoppimissovelluksia ja osaa soveltaa opittuja teknologioita myös vaativampien sovellusten kehityksessä. Hän osaa oma-aloitteisesti laajentaa osaamistaan myös kurssilla esitettyjen asioiden ulkopuolelle. Hän on yrittänyt tehdä kaikki harjoitustehtävät ja päässyt ohjeiden määrittämään lopputulokseen vähintään 80%:ssa tehtävistä.

(Kiitettävä 4) Opiskelija osaa toteuttaa perustason koneoppimissovelluksia ja osaa soveltaa opittuja teknologioita myös vaativampien sovellusten kehityksessä. Hän osaa oma-aloitteisesti laajentaa osaamistaan myös kurssilla esitettyjen asioiden ulkopuolelle. Hän on yrittänyt tehdä kaikki harjoitustehtävät ja päässyt ohjeiden määrittämään lopputulokseen vähintään 90%:ssa tehtävistä.

Arviointikriteerit, kiitettävä (5)

(Erinomainen 5) Opiskelija osaa edellisten vaatimusten lisäksi arvioida kriittisesti koneoppimisalgoritmeja ja pilvialustojen työkaluja sekä ymmärtää teknologioiden valintakriteerit eri käyttötarkoituksiin. Hän on tehnyt kaikki harjoitustehtävät ja päässyt kaikissa ohjeiden määrittämään lopputulokseen.

Esitietovaatimukset

Tietorakenteet ja algoritmit
Backend- ja Frontend web-sovelluskehityksen perusteet