Skip to main content

Machine Learning in RoboticsLaajuus (5 cr)

Code: YT00CD08

Credits

5 op

Teaching language

  • English

Responsible person

  • Tomi Nieminen

Objective

The student understands the significance of machine learning in digitalizing operational environment. The student knows the most common machine learning methods, is able to apply them in practice to existing data and interpret the results of the methods. In particular, the student is able to apply machine learning models in robotics.

Course Competences:
EUR-ACE: Engineering Design, Master's Degree
EUR-ACE: Engineering Practice, Master's Degree
EUR-ACE: Investigations, Master's Degree

Content

- Most common regression and classification models of supervised machine learning and their application in Python programming environment using NumPy, Pandas, Scikit-learn and Tensorflow libraries.
- Linear and logistic regression
- Support Vector Machine
- Neural networks
- Reinforcement learning

Assessment criteria, satisfactory (1)

Sufficient 1: Student has sufficient knowledge of machine learning algorithms and neural networks. Student is able to apply the most common techniques of machine learning and has the sufficient knowledge of the mathematics behind the techniques. Additionally, the student is able to estimate and validate implementation briefly.

Satisfactory 2: Student has satisfactory knowledge of machine learning and neural networks. Student is able to choose a suitable machine learning technique and apply the technical know-how in practice. Student understands the mathematics behind the techniques at a satisfactory level. Additionally, the student is able to estimate and validate implementation superficially.

Assessment criteria, good (3)

Good 3: Student has good knowledge of machine learning algorithms and neural networks. Student is able to choose an appropriate machine learning technique and apply the technical know-how in practice. Student understands well the mathematics behind the techniques at a good level. Additionally, the student is able to estimate and validate implementation well.

Very good 4: Student has very good knowledge of machine learning algorithms and neural networks. Student is able to choose and justify versatilely a machine learning technique and apply the technical know-how in practice. Student understands the mathematics behind the techniques at a very good level. Additionally, the student is able to estimate and validate implementation critically.

Assessment criteria, excellent (5)

Excellent 5: Student has excellent knowledge of machine learning algorithms and neural networks. Student is able to choose and justify machine learning technique and apply the technical know-how in practice. Student understands the mathematics behind the techniques at an excellent level. Additionally, the student is able to estimate and validate implementation critically.

Enrollment

20.11.2024 - 09.01.2025

Timing

07.01.2025 - 30.04.2025

Number of ECTS credits allocated

5 op

Mode of delivery

Face-to-face

Unit

School of Technology

Campus

Main Campus

Teaching languages
  • English
Degree programmes
  • Master's Degree Programme in Robotics
Teachers
  • Tomi Nieminen

Objectives

The student understands the significance of machine learning in digitalizing operational environment. The student knows the most common machine learning methods, is able to apply them in practice to existing data and interpret the results of the methods. In particular, the student is able to apply machine learning models in robotics.

Course Competences:
EUR-ACE: Engineering Design, Master's Degree
EUR-ACE: Engineering Practice, Master's Degree
EUR-ACE: Investigations, Master's Degree

Content

- Most common regression and classification models of supervised machine learning and their application in Python programming environment using NumPy, Pandas, Scikit-learn and Tensorflow libraries.
- Linear and logistic regression
- Support Vector Machine
- Neural networks
- Reinforcement learning

Teaching methods

Virtual study

Evaluation scale

0-5

Evaluation criteria, satisfactory (1-2)

Sufficient 1: Student has sufficient knowledge of machine learning algorithms and neural networks. Student is able to apply the most common techniques of machine learning and has the sufficient knowledge of the mathematics behind the techniques. Additionally, the student is able to estimate and validate implementation briefly.

Satisfactory 2: Student has satisfactory knowledge of machine learning and neural networks. Student is able to choose a suitable machine learning technique and apply the technical know-how in practice. Student understands the mathematics behind the techniques at a satisfactory level. Additionally, the student is able to estimate and validate implementation superficially.

Evaluation criteria, good (3-4)

Good 3: Student has good knowledge of machine learning algorithms and neural networks. Student is able to choose an appropriate machine learning technique and apply the technical know-how in practice. Student understands well the mathematics behind the techniques at a good level. Additionally, the student is able to estimate and validate implementation well.

Very good 4: Student has very good knowledge of machine learning algorithms and neural networks. Student is able to choose and justify versatilely a machine learning technique and apply the technical know-how in practice. Student understands the mathematics behind the techniques at a very good level. Additionally, the student is able to estimate and validate implementation critically.

Evaluation criteria, excellent (5)

Excellent 5: Student has excellent knowledge of machine learning algorithms and neural networks. Student is able to choose and justify machine learning technique and apply the technical know-how in practice. Student understands the mathematics behind the techniques at an excellent level. Additionally, the student is able to estimate and validate implementation critically.