Data analytiikan ja koneoppimisen käytänteet (4 op)
Toteutuksen tunnus: TTC8020-3007
Toteutuksen perustiedot
Ilmoittautumisaika
01.08.2023 - 24.08.2023
Ajoitus
13.11.2023 - 19.12.2023
Opintopistemäärä
4 op
Virtuaaliosuus
4 op
Toteutustapa
Verkko-opetus
Yksikkö
Teknologiayksikkö
Opetuskielet
- Suomi
Paikat
0 - 30
Koulutus
- Tieto- ja viestintätekniikka (AMK)
Opettaja
- Juha Peltomäki
Ryhmät
-
TTV21S3Tieto- ja viestintätekniikka (AMK)
-
TTV21S5Tieto- ja viestintätekniikka (AMK)
-
TTV21SMTieto- ja viestintätekniikka (AMK)
-
TTV21S2Tieto- ja viestintätekniikka (AMK)
-
ZJA23STIDA1Avoin amk, Data-analytiikka 1, Verkko
-
TTV21S1Tieto- ja viestintätekniikka (AMK)
- 27.11.2023 16:30 - 18:00, Data analytiikan ja koneoppimisen käytänteet TTC8020-3007
- 11.12.2023 16:00 - 17:30, Data analytiikan ja koneoppimisen käytänteet TTC8020-3007
Objectives
Ymmärrät data-analytiikan ja koneoppimisen käytänteet ja projektin rakenteen ja kulun. Ymmärrät, millä tavalla datapohjainen projekti suunnitellaan, rakennetaan ja toteutetaan. Tunnistat myös datapohjaisten projektien keskeisen terminologian ja yleisimmät käytänteet. Ymmärrät datan visualisoinnin merkityksen. Tiedät opetus- ja testijoukon käsitteet ja yleisimmät tavat niihin jakamiseen. Saat perustiedot käytetyimmistä data-analytiikan ja koneoppimisen työkaluista.
EUR-ACE-osaamiset:
Tieto ja ymmärrys
Tekniikan soveltaminen käytäntöön
Content
- Dataan pohjautuvan projektin rakenne ja toteutus
- Data-analytiikan ja koneoppimisen käytänteet
- Opetus- ja testijoukon käsitteet ja yleisimmät tavat niiden jakamiseen
- Datapohjaisen projektin dokumentointi ja visualisointi
- Esittely data-analytiikka ja koneoppimisen yleisimpiin työkaluihin ja niihin tarvittava käytännön osaaminen
Time and location
Opintojakso toteutetaan syyslukukaudella 2023.
Learning materials and recommended literature
Materiaali harjoitustehtäviä ja opiskeltavia asiasisältöjä varten jaetaan kurssin aikana.
Teaching methods
Virtuaalinen opiskelu sisältäen harjoitustehtävien tekemisen sekä niihin liittyviin luento- ja esimerkkimateriaaleihin perehtymisen.
Harjoitustehtävät tehdään pääsääntöisesti ryhmätöinä.
Practical training and working life connections
Opintojakson sisältö pyritään kytkemään työelämässä esiintyviin ongelmiin.
Alternative completion methods
Hyväksilukemisen menettelytavat kuvataan tutkintosäännössä ja opinto-oppaassa. Opintojakson opettaja antaa lisätietoa mahdollisista opintojakson erityiskäytänteistä.
Student workload
Yhden opintopisteen työmäärä vastaa 27 tunnin opiskelutyötä. Yhteensä opiskelutyömäärä (4 op) kurssilla on 108 tuntia.
Further information for students
Opintojakso arvioidaan palautettujen harjoitustehtävien perusteella, jotka tulee palauttaa annettuihin aikatauluihin mennessä.
Arviointimenetelmät käydään läpi opintojakson alussa.
Evaluation scale
0-5
Evaluation criteria, satisfactory (1-2)
Tyydyttävä 2: Tunnet data-analytiikka ja koneoppimisen projektin eri vaiheet. Osaat suunnitella data-analytiikan ja koneoppimisen projektin vaiheet. Lisäksi osaat pintapuolisesti toteutuksensa ja perustella johtopäätökset.
Välttävä 1: Tunnet data-analytiikka ja koneoppimisen projektin eri vaiheet. Osaat pintapuolisesti suunnitella data-analytiikan ja koneoppimisen projektin vaiheet. Lisäksi osaat arvioida suppeasti toteutuksensa ja tekemänsä johtopäätökset.
Evaluation criteria, good (3-4)
Kiitettävä 4: Tunnet data-analytiikka ja koneoppimisen projektin eri vaiheet ja osaa systemaattisesti edetä vaihe vaiheelta. Osaat suunnitella data-analytiikan ja koneoppimisen projektin vaiheet riippumatta ratkaistavasta ongelmasta. Lisäksi osaat monipuolisesti arvioida toteutuksensa ja perustella johtopäätökset.
Hyvä 3: Tunnet data-analytiikka ja koneoppimisen projektin eri vaiheet ja osaa edetä vaihe vaiheelta. Osaat suunnitella data-analytiikan ja koneoppimisen projektin vaiheet riippumatta ratkaistavasta ongelmasta. Lisäksi osaat monipuolisesti arvioida toteutuksensa ja perustella johtopäätökset.
Evaluation criteria, excellent (5)
Erinomainen 5: Tunnet data-analytiikka ja koneoppimisen projektin eri vaiheet ja osaa systemaattisesti edetä vaihe vaiheelta. Osaat suunnitella data-analytiikan ja koneoppimisen projektin vaiheet riippumatta ratkaistavasta ongelmasta. Lisäksi osaat arvioida kriittisesti toteutuksensa ja perustella johtopäätökset.