Skip to main content

Mat1 Yhtälöt (monimuoto) (3 op)

Toteutuksen tunnus: TZLM1300-3107

Toteutuksen perustiedot


Ilmoittautumisaika

01.08.2024 - 22.08.2024

Ajoitus

21.10.2024 - 18.12.2024

Opintopistemäärä

3 op

Toteutustapa

Lähiopetus

Yksikkö

Teknologiayksikkö

Opetuskielet

  • Suomi

Paikat

0 - 35

Koulutus

  • Tieto- ja viestintätekniikka (AMK)

Opettaja

  • Ville Arvio

Ryhmät

  • TTV24SM
    Tieto- ja viestintätekniikka (AMK)
  • ZJATTV24SM
    Avoin amk, Tieto- ja viestintätekniikka, Monimuoto
  • 23.10.2024 16:00 - 17:30, Mat1 Yhtälöt (monimuoto) TZLM1300-3107
  • 28.10.2024 16:00 - 17:30, Mat1 Yhtälöt
  • 30.10.2024 16:00 - 17:30, Mat1 Yhtälöt (monimuoto) TZLM1300-3107
  • 11.11.2024 16:00 - 17:30, Mat1 Yhtälöt
  • 13.11.2024 17:00 - 18:30, Mat1 Yhtälöt (monimuoto + ke-to lähiryhmät) TZLM1300
  • 16.11.2024 10:30 - 12:00, Mat1 Yhtälöt (monimuoto) TZLM1300-3107
  • 16.11.2024 13:30 - 15:00, Mat1 Yhtälöt (monimuoto) TZLM1300-3107
  • 25.11.2024 16:00 - 17:30, Mat1 Yhtälöt
  • 27.11.2024 16:00 - 17:30, Mat1 Yhtälöt (monimuoto) TZLM1300-3107
  • 02.12.2024 16:00 - 17:30, Mat1 Yhtälöt
  • 04.12.2024 15:45 - 16:45, Mat1 Yhtälöt (monimuoto) TZLM1300-3107

Objectives

Opintojakson tarkoitus

Tällä opintojaksolla opit niitä matemaattisia yhtälönratkaisutaitoja, jotka ovat välttämättömiä insinööriopinnoissa.

Opintojakson osaamiset

EUR-ACE: Tieto ja ymmärrys
Sinulla on tieto ja ymmärrys oman teknisen erikoistumisalasi matemaattisista ja luonnontieteellisistä perusteista tasolla, joka on tarpeen ohjelman muiden oppimistavoitteiden saavuttamiseksi.

Opintojakson osaamistavoite

Opintojakson suoritettuasi osaat sieventää lausekkeita. Osaat ratkaista polynomi- ja juuriyhtälöitä sekä yhtälöryhmiä käsin, graafisesti ja tietotekniikkaa hyödyntäen. Osaat ratkaista matemaattisia ongelmia valmiiden mallien avulla. Lisäksi perehdyt tutkinto-ohjelmakohtaiseen matemaattiseen sisältöön.

Content

Tällä opintojaksolla opit välttämättömät matemaattiset yhtälönratkaisutaitot insinööriopintoja varten. Hallitset lausekkeiden sieventämisen ja osaat ratkaista polynomi- ja juuriyhtälöitä sekä yhtälöryhmiä käsin, graafisesti ja tietotekniikkaa hyödyntäen. Opit ratkaisemaan matemaattisia ongelmia valmiiden mallien avulla ja perehdyt tutkinto-ohjelmakohtaiseen matemaattiseen sisältöön. Tämä opintojakso antaa sinulle vahvan pohjan teknisten ongelmien ratkaisemiseen ja matemaattisten taitojen soveltamiseen käytännössä.

Keskeisimmät sisällöt ovat:

- Lausekkeiden sieventäminen (murtopotenssi, polynomit, rationaalilausekkeet, muistikaavat)
- Funktion kuvaajan piirtäminen ja tulkitseminen
- Ensimmäisen asteen yhtälöt ja suorat
- Toisen asteen yhtälöt ja paraabelit
- Juuria sisältävät yhtälöt
- Yhtälöryhmät
- Prosenttilaskut ja verrannot
- Suorakulmaisen kolmion trigonometriaa
- Avaruusgeometrian alkeet
- Tutkinto-ohjelmakohtaisia sisältöjä

Time and location

Toteutus 2-jakson aikana verkossa + lauantaiopintopäivä Dynamolla (osallistumismahdollisuus lähenä, etänä tai tallenne katsoen)

Tarkempi aikataulu sovitaan ja ilmoitetaan opintojakson alussa.

Learning materials and recommended literature

Opettajan oppimisympäristössä julkaisema materiaali.
Lisämateriaaliksi suositellaan esimerkiksi Alestalo, Lehtola, Nieminen, Rantakaulio: Tekninen Matematiikka 1 -oppikirjaa.

Teaching methods

Kontaktiopetus verkossa 2+2 h/viikko (oppitunnit, ryhmätehtäviä ja laskuharjoituksia)
Itsenäisiä laskuharjoituksia
Automaattitestejä
Loppukokeet

Exam dates and retake possibilities

Opintojaksosta on kurssikoe ja kaksi uusintamahdollisuutta.
Tenttien ja uusintamahdollisuuksien ajankohdat ilmoitetaan opintojakson alussa.

Kurssi päättyy uusintakoe-2:een. Tämän jälkeen kurssipalautuksia ei voi enää palauttaa ja vaillinaisesti suoritettu kurssi tulee käydä kokonaan uudelleen seuraavan kurssitoteutuksen yhteydessä.

Alternative completion methods

Mahdollisuus tenttiä kurssikokeella opintojakson alussa Exam-koealustalla tai muulla tapaa järjestettynä. Tämän lisäksi kurssityöt täytyy palauttaa Moodleen.

Student workload

Opintojakson laskennallinen kuormitus on 3 op * 27 h/op = 81 h.

Kontaktiopetus ja -ohjaus noin 30 h
Viikottaiset laskuharjoitukset ja -tehtävät sekä testit 6 x 6 h = 36 h
Itsenäinen materiaalin opiskelu, kokeisiin valmistautuminen ja projektityö 12 h
Loppukokeet 3 h

Joillakin viikoilla voi olla etäopetusta Dynamon tilojen käytettävyydestä riippuen.

Further information for students

Arviointimenetelmät:
Opintojaksoon liittyy pakollisia tehtäviä, kotitehtäviä ja välitestejä. Arviointi tehdään opintojakson päätteeksi olevalla läpäisy- ja arvosanakokeella tai Exam-kokeena. Läpäisy- ja arvosanakokeeseen voi osallistua, kun opintojakson pakolliset suoritteet on hyväksytysti tehty. Läpäisykokeella saa arvosanan 1. Korkeampi arvosana edellyttää arvosanakokeeseen osallistumista.

Suositellaan valitsemaan myös opintojakso Mat1 Tukiopinnot, jos lukion pitkän matematiikan opintoja ei ole pohjalla tai kaipaat laskurutiinin kartuttamista.

Evaluation scale

0-5

Evaluation criteria, satisfactory (1-2)

Arvosana 1

Osaat sieventää lausekkeita. Tunnistat erityyppisiä yhtälöitä ja osaat ratkaista yksinkertaisia polynomi- ja juuriyhtälöitä ja yhtälöpareja. Osaat käyttää valmiita sanallisista ja geometrisista ongelmista muodostettuja matemaattisia malleja ongelmien ratkaisemiseen.

Arvosana 2

Ymmärrät polynomiyhtälön käsitteen ja merkinnät. Osaat ratkaista polynomi- ja juuriyhtälöitä ja yhtälöpareja käsin, graafisesti ja tietotekniikkaa hyödyntäen. Osaat muodostaa yksinkertaisista sanallisista ja geometrisista ongelmista matemaattisia malleja ja käyttää niitä ongelmien ratkaisemiseen.

Evaluation criteria, good (3-4)

Arvosana 3

Osaat polynomiyhtälön käsitteen ja merkinnät. Osaat ratkaista polynomi- ja juuriyhtälöitä ja yhtälöpareja käsin, graafisesti ja tietotekniikkaa hyödyntäen. Osaat muodostaa yksinkertaisista sanallisista ja geometrisista ongelmista matemaattisia malleja ja käyttää niitä ongelmien ratkaisemiseen.

Arvosana 4

Osaat polynomiyhtälön käsitteen ja merkinnät. Osaat ratkaista haastavia polynomi- ja juuriyhtälöitä ja yhtälöpareja käsin, graafisesti ja tietotekniikkaa hyödyntäen. Osaat muodostaa aiemmin käsiteltyjen tilanteiden kaltaisista sanallisista ja geometrisista ongelmista matemaattisia malleja ja käyttää niitä ongelmien ratkaisemiseen.

Evaluation criteria, excellent (5)

Arvosana 5

Osaat polynomiyhtälön käsitteen ja merkinnät. Osaat ratkaista haastavia polynomi- ja juuriyhtälöitä ja yhtälöpareja käsin, graafisesti ja tietotekniikkaa hyödyntäen. Osaat muodostaa myös uusista sanallisista ja geometrisista ongelmista matemaattisia malleja ja käyttää niitä luovasti ongelmien ratkaisemiseen.

Prerequisites

Osaat peruslaskutoimitukset ja -säännöt luvuilla ja symboleilla. Ymmärrät lausekkeen ja yhtälön eron, ja osaat ratkaista yksinkertaisia ensimmäisen ja toisen asteen yhtälöitä. Hallitset prosenttilaskun perustapaukset. Tunnet funktioiden alkeet.

Lisätiedot

Opintojakso sopii hyvin suoritettavaksi jo ennen amk-insinööriopintojen alkua. Opintojakso antaa hyviä matemaattisia valmiuksia myös muun kuin teknisen alan opintoja varten. Opintojakso on tarjolla myös polkuopinnoissa ja avoimessa ammattikorkeakoulussa.