Skip to main content

Applied Mathematics: CryptologyLaajuus (3 cr)

Code: TTZM0360

Credits

3 op

Teaching language

  • Finnish

Responsible person

  • Sirpa Alestalo

Objective

The student knows and understands the basics of combinatorics and number theory and can apply them to their own field. The student knows and understands mathematical principles of the most common cryptology methods. They are able to choose a suitable cryptography for the application and has the readiness to deepen their competence.

Content

Basics of combinatorics and number theory (divisibility, prime numbers, congruence, modular arithmetics), random number generation, classic cryptology methods, symmetric and asymmetric cryptography, elliptic curves.

Qualifications

-

Assessment criteria, satisfactory (1)

Pass (S)
- With the returnable exercises and exam, the student demonstrates their knowledge and understanding of the essential mathematical concepts and calculation rules related to cryptology.
- With the course assignment, the student demonstrates ability to deeper study independently/in a group, some cryptology related topic. The assignment consists of both written and speaking part, both of which are assessed.
- The student demonstrates understanding of the mathematical principles of cryptology methods and knowledge of the purpose and use of cryptology methods.
50 % of the maximum points of all items are required for an accepted course. The items are assessed by the lecturer.

Assessment criteria, approved/failed

Pass (S) - With the returnable exercises and exam, the student demonstrates their knowledge and understanding of the essential mathematical concepts and calculation rules related to cryptology. - With the course assignment, the student demonstrates ability to deeper study independently/in a group, some cryptology related topic. The assignment consists of both written and speaking part, both of which are assessed. - The student demonstrates understanding of the mathematical principles of cryptology methods and knowledge of the purpose and use of cryptology methods. 50 % of the maximum points of all items are required for an accepted course. The items are assessed by the lecturer.

Enrollment

01.11.2021 - 09.01.2022

Timing

07.03.2022 - 29.04.2022

Number of ECTS credits allocated

3 op

Virtual portion

1 op

Mode of delivery

67 % Face-to-face, 33 % Online learning

Unit

School of Technology

Campus

Lutakko Campus

Teaching languages
  • Finnish
Seats

0 - 35

Degree programmes
  • Bachelor's Degree Programme in Information and Communications Technology
Teachers
  • Sirpa Alestalo
Groups
  • TTV19S1
    Tieto- ja viestintätekniikka
  • TTV19S2
    Tieto- ja viestintätekniikka
  • TTV19S5
    Tieto- ja viestintätekniikka

Objectives

The student knows and understands the basics of combinatorics and number theory and can apply them to their own field. The student knows and understands mathematical principles of the most common cryptology methods. They are able to choose a suitable cryptography for the application and has the readiness to deepen their competence.

Content

Basics of combinatorics and number theory (divisibility, prime numbers, congruence, modular arithmetics), random number generation, classic cryptology methods, symmetric and asymmetric cryptography, elliptic curves.

Time and location

Opintojakso toteututetaan viikoilla 11- 17 (14.3.-25.4.2022) Dynamolla, Lutakon kampuksella tai etänä Zoomissa

Learning materials and recommended literature

Opettajan oppimisympäristössä jakama kirjallinen materiaali ja videomateriaali.

Teaching methods

Kontaktiopetus/etäopetus 3+2 h/viikko, joissa luentoa ja laskuharjoituksia.
Palautettavat laskuharjoitukset.
Viikkotestit oppimisympäristössä.
Vapaaehtoinen harjoitustyö itsenäisesti.
Itsenäistä opiskelua varten on olemassa luentovideot.

Exam dates and retake possibilities

Julkaistaan opintojakson alussa oppimisympäristössä.

Alternative completion methods

Hyväksilukemisen menettelytavat kuvataan tutkintosäännössä ja opinto-oppaassa. Opintojakson opettaja antaa lisätietoa mahdollisista opintojakson erityiskäytänteistä.

Student workload

Luennot + laskuharjoitukset 30 h
Palautettavat laskuharjoitukset 2 x 9 h = 18 h
Viikkotestit 5 x 1 h = 5 h
Itsenäinen opiskelu ja tenttiin valmistautuminen 25 h
Tentti 3 h
Vapaaehtoinen harjoitustyö 12 h
Kuormitus on tasainen koko opintojakson ajan, yhteensä 81 h.

Further information for students

Opintojakso arvioidaan tentin, palautettavien laskuharjoitusten, viikkotestien ja mahdollisen harjoitustyön avulla. Suoritteet pisteytetään. Hyväksyttyyn suoritukseen vaaditaan vähintään puolet koko opintojakson maksimipistemäärästä ja vähintään kolmasosa kokeen maksimipistemäärästä.

Evaluation scale

Pass/Fail

Evaluation criteria, satisfactory (1-2)

Pass (S)
- With the returnable exercises and exam, the student demonstrates their knowledge and understanding of the essential mathematical concepts and calculation rules related to cryptology.
- With the course assignment, the student demonstrates ability to deeper study independently/in a group, some cryptology related topic. The assignment consists of both written and speaking part, both of which are assessed.
- The student demonstrates understanding of the mathematical principles of cryptology methods and knowledge of the purpose and use of cryptology methods.
50 % of the maximum points of all items are required for an accepted course. The items are assessed by the lecturer.

Evaluation criteria, pass/failed

Pass (S) - With the returnable exercises and exam, the student demonstrates their knowledge and understanding of the essential mathematical concepts and calculation rules related to cryptology. - With the course assignment, the student demonstrates ability to deeper study independently/in a group, some cryptology related topic. The assignment consists of both written and speaking part, both of which are assessed. - The student demonstrates understanding of the mathematical principles of cryptology methods and knowledge of the purpose and use of cryptology methods. 50 % of the maximum points of all items are required for an accepted course. The items are assessed by the lecturer.

Prerequisites

-