Johdatus data-analytiikkaan ja tekoälyynLaajuus (3 op)
Opintojakson tunnus: TTC2050
Opintojakson perustiedot
- Laajuus
- 3 op
- Opetuskieli
- suomi
- englanti
- Vastuuhenkilö
- Antti Häkkinen
- Juha Peltomäki
Osaamistavoitteet
Tarkoitus ja osaamistavoitteet:
Opintojaksolla saat yleiskuvan data-analytiikan ja tekoälyn menetelmistä, mahdollisuuksista ja käyttökohteista sekä niissä käytettävistä yleisimmistä ohjelmointiympäristöistä ja –kirjastoista.
EUR-ACE-osaamiset:
Tieto ja ymmärrys
Tekniikan soveltaminen käytäntöön
Sisältö
Data-analytiikan ja tekoälyn määritelmät.
Tekoälyn käytännön sovelluksia.
Esimerkkejä ja periaatteita koneoppimisesta ja neuroverkoista.
Data-analytiikan ohjelmointikieliä ja -ympäristöjä: Python, R, Anaconda, Pandas.
Esitietovaatimukset
Ohjelmoinnin perusteet
Arviointikriteerit, tyydyttävä (1)
Välttävä 1: Tunnistat joitakin tärkeimpiä data-analytiikan ja tekoälyn menetelmiä, mahdollisuuksia, käyttökohteita tai niissä käytettäviä ohjelmointiympäristöjä.
Tyydyttävä 2: Tunnistat joitakin tärkeimpiä data-analytiikan ja tekoälyn menetelmiä, mahdollisuuksia ja käyttökohteita ja niissä käytettäviä ohjelmointiympäristöjä.
Arviointikriteerit, hyvä (3)
Hyvä 3: Tunnistat tärkeimmät data-analytiikan ja teköälyn menetelmät, mahdollisuudet ja käyttökohteet ja niissä käytettävät ohjelmointiympäristöt.
Kiitettävä 4: Tunnistat tärkeimmät data-analytiikan ja teköälyn menetelmät, mahdollisuudet ja käyttökohteet ja niissä käytettävät ohjelmointiympäristöt. Lisäksi ymmärrät joitain tekoälymenetelmien periaatteita.
Arviointikriteerit, kiitettävä (5)
Erinomainen 5: Tunnistat tärkeimmät data-analytiikan ja teköälyn menetelmät, mahdollisuudet ja käyttökohteet ja niissä käytettävät ohjelmointiympäristöt. Lisäksi ymmärrät tärkeimmät tekoälymenetelmien periaatteet.